S SYBASE

Performance and Tuning: Locking

Adaptive Server® Enterprise

12.5.1

DOCUMENT ID: DC20021-01-1251-01
LAST REVISED: August 2003

Copyright © 1989-2003 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in thisdocument is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, AccelaTrade, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture,
Adaptive Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, Anywhere Studio, Application
Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Trandlator, APT-Library, AvantGo,
AvantGo Application Alerts, AvantGo Mobile Delivery, AvantGo Mobile Document Viewer, AvantGo Mobile Inspection, AvantGo
Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon Application Server,
AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker, ClearConnect, Client-Library,
Client Services, Convoy/DM, Copernicus, DataPipeline, DataWorkbench, DataArchitect, Database Analyzer, DataExpress, DataServer,
Datawindow, DB-Library, doQueue, Devel opers Workbench, Direct Connect Anywhere, DirectConnect, Distribution Director, eeADK,
E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway, ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise
Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server
Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA,
Financial Fusion, Financia Fusion Server, Gateway Manager, GlobalFI X, ImpactNow, |ndustry Warehouse Studio, InfoMaker,
Information Anywhere, Information Everywhere, |nformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, Mail
Anywhere Studio, MainframeConnect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, My AvantGo, My AvantGo MediaChannel,
My AvantGo Mobile Marketing, MySupport, Net-Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC
Net Library, PocketBuilder, Pocket PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage,
PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Rapport, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager,
Replication Toolkit, Resource Manager, RW-DisplayLib, S-Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian,
SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL
Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART,
SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, SW.I.F.T.
Message Format Libraries, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase MPP,
Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL,
Trang ation Toolkit, UltraLite.NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visua
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 03/03

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

ADOUL THIS BOOK ...uiiiiiiiiiie ettt ettt e e et e e e e e e et e e e e e s e e st aaeeaaeesannntranneaaeesaane vii
CHAPTER 1 Introduction to Performance and TuNiNgcccoeeeeeviiiieicinnninnnne, 1
CHAPTER 2 LOCKING OVEIVIEW ..oceeiieii ittt e e e 3
How locking affects performanceccccovieiiiiiiiie e 4

Overview Of I0CKINGcoiiuiiiiiiiie e 4

Granularity of locks and locking schemes..........ccccocciviiiiieiiiniinnen, 6

AlPAGES I0CKING ..vvvviiiiiiiiiiiiie et 6

Datapages [0CKINGoocviiiiiiie e 8

Datarows I0CKINGvvvviiiiiiiiiie e 9

Types of locks in AJaptive SEIVETccceviiiiiiiiiiiee e 9

Page and row [0CKSccuvviieiiiiiiiiiiiee e 10

TabBIE IOCKSvviiieiicetieet et 12

Demand 10CKS.........ccovieiiiiiiiiiice e 13

Range locking for serializable readscccoooeiiiiinennenn. 17

LAtCRES .. 17

Lock compatibility and lock sufficiency..........cccccovviiiiiiiiniienens 18

How isolation levels affect 10CKiNg.........ccccoevioiiiiiiiiiiiiieeieeee 19

Isolation Level O, read uncommitted...........cccccovvvreeiiiieeeninnen. 20

Isolation Level 1, read committed..........cccoovvveiniiieeiniiiee e, 22

Isolation Level 2, repeatable readccoccvvvivieeiiiiiiniennn. 23

Isolation Level 3, serializable readscccccoovviiiiiieeinnnen, 23

Adaptive Server default isolation levelccccccccovviiiiiennnenn. 25

Lock types and duration during query processing........cccceceeeeevvvnne 26

Lock types during create index commands..........cccceeevvvvvvneen. 29

Locking for select queries at isolation Level 1......................... 29

Table scans and isolation Levels 2 and 3cccccceeviiieeens 30

When update locks are not requiredcccoceeeiiiieeiiinens 30

Locking during Or ProCeSSINGeeeeeiureeeaiiieeeaiieeeaaieeeeenieens 31

Skipping uncommitted inserts during selectscc........ 32

Using alternative predicates to skip nonqualifying rows.......... 33

Pseudo column-level 1oCKiNg.........cccviiiiiiiiieiiiie e, 34
Performance & Tuning: Locking iii

Contents

Select queries that do not reference the updated column....... 34
Qualifying old and new values for uncommitted updates........ 35
Suggestions to reduce CONENLIONccovvivviiiereeeeiiiiiiee e 36
CHAPTER 3 Locking Configuration and TUNINGceeveeveeeeeeiiiiiicceiieeeeee, 39
Locking and performanCe...........oeoiueieeiiieeee i 39
Using sp_sysmon and sp_object_statS..........ccccceeivvveeiiienennns 40
Reducing lock contentioncccooeieieiiiiee e 40
Additional locking guidelinesccccceeviiiiiiieee e, 43
Configuring locks and lock promotion thresholds........................... 44
Configuring Adaptive Server’s lock limit...........cccccceeeeiiiinnnnnn. 45
Configuring the lock hashtable (Lock Manager)...................... 47
Setting lock promotion thresholdscccccovviiiiiiinie e, 48
Choosing the locking scheme for atablec.coocciiviiiieiiiniinnnen, 53
Analyzing existing applications...........cccoovvvvviieeieeiiiiiiiiieneeeenn 54
Choosing a locking scheme based on contention statistics 54
Monitoring and managing tables after conversion................... 56
Applications not likely to benefit from data-only locking........... 56
Optimistic INAeX 10CKING........ccoiiiiiiiiiiie e 58
Understanding optimistic index 10ckingcccccovcviieniiiens 58
Using optimistic index 10CKingccccceiriiiriiiieiiieee e, 58
CautionNs AN ISSUEScccuvvrieiieeeeieiiiieee e e e e eeeirree e e e e e e ananeee s 59
CHAPTER 4 Using Locking ComMmandsccceeeeeiiiiiiiieiniiiiiie e 61
Specifying the locking scheme for atable..........cccocociiiiiien, 61
Specifying a server-wide locking schemeccccccevviniinneen. 61
Specifying a locking scheme with create table........................ 62
Changing a locking scheme with alter tableccuvvee. 63
Before and after changing locking schemescccccceeeeen. 63
Expense of switching to or from allpages locking.................... 65
Sort performance during alter table...............ccccvvvieeniiiinnnen. 65
Specifying a locking scheme with select into 66
Controlling isolation 1EVEIS..........cc.uvvvieee e 66
Setting isolation levels for a SeSSIoNccccvviieeeriiieeeinieeen. 67
Syntax for query-level and table-level locking options 67
Using holdlock, noholdlock, or shared..............cccccceevvivrvnenn... 68
Using the at isolation clause.............cccceeviieieiiiiie e, 69
Making locks more restrictivec.uvveeveeeiviiiiiiiieeee e 69
Making loCKS €SS restriCtiveccuvvvveeiiei i 70
Readpast I0CKING..........uviiiiiiiiiiiei e 71
Cursors and loCKINGcvvveeeiiiiiiiiiie e 71
Using the shared KEYWOIrd............occvvvviiiieiiiiiiiiiienee e, 73
Additional locking commands............c.uvvvieeeiiiiiiiiiiee e 74

iv Adaptive Server Enterprise

Contents

lock table Command...........cccoeiiiiiiiiiiie e 74
LOCK tIMEOULS ... e ettt e e 75
CHAPTER 5 LOCKING REPOIS ...ttt 77
LOCKING tOOISeeeieieiiee ettt 77
Getting information about blocked processesccuvvueee. 77
VIEWING T0CKS ...eiiiiiiiiiiiiiiice e 78
VIEWING T0CKSiiiiiiiiiiiiiiiie e 80
Intrafamily blocking during network buffer merges.................. 81
Deadlocks and CONCUITENCYuvveiieeiiiiiiiieenie e iiiiiee e 81
Server-side versus application-side deadlocks 82
Server task deadlOCKScooueiiiiiiiii e 82
Deadlocks and parallel qUETIESoeeevieieeiiiiieeeiee e 84
Printing deadlock information to the error log...........cccceeeneeeee. 85
Avoiding deadlocKscceviiiiiiiiiiiie e 86
Identifying tables where concurrency is a problem 88
Lock management rePOrtingcocceeeeeriueeeeenieeeeenieeeeeeieee e 89
CHAPTER 6 Indexing for Performanceccccoviiiieiiiiiiie e 91
How indexes affect performance...........cccovveevieeiiiiiiiiie i, 91
Detecting indexing problems.........ccccccoiiiiiieiiiii e, 92
Symptoms of POOr iNAEXINGevevveiiiiiiiiiiiieee e 92
Fixing corrupted iNAEXESoovvviiiiiiei e 95
Repairing the system table indexccccccco i, 95
Index limits and reqUIreMENtScooviiiiiiieniee e 98
ChoOoSING INAEXES......ueeeiiiieie et 98
Index keys and logical Keys..........ccooiiiiiiiiiiiiee e, 99
Guidelines for clustered INAEXESccceeeiiiiieeiiiiiee e 100
Choosing clustered INAEXESccueeeviiieieiiiiee e 101
Candidates for nonclustered indexes..........ccccceevieeeeiienenne 101
INdEX SelECONcoiiiiiie e 102
Other indexing guidelinescccceeiiiiiiiiiee e 104
Choosing nonclustered iNdeXeSccvvvvvieeeeiiniiiiieiiee e 105
Choosing cOMpPOSIte INAEXESccvveeiiiiiiiiiiiiiee e 106
Key order and performance in composite indexes................ 106
Advantages and disadvantages of composite indexes 108
Techniques for chooSIiNg INAEXES..........cvvviiiiiiiiiiiiiee e 109
Choosing an index for a range qUEeryccccccvvvvviveeiieen i 109
Adding a point query with different indexing requirements.... 110
Index and statistics mainteNanCeccccevveeeeeriieee e 112
Dropping indexes that hurt performance.............cccccoccoeeenee 112
Choosing space management properties for indexes........... 112
Additional INdeXiNg tiPS ...cocoiveririiiiee e 113
Performance & Tuning: Locking

Creating artificial cCOlUMNS...........occoiiiiii e 113

Keeping index entries short and avoiding overhead.............. 113
Dropping and rebuilding indexescccocceeeiieiniieeee e, 114
Configure enough sort bufferscoccvvvveeiiiii s 114
Create the clustered iNndex firSt.........ccoccvveiiiieiciniee e 114
Configure large buffer poolscccocviiieiiiiici s 114
ASYNChroN0US 10Q SEIVICE.......ciiiiiiiiiiiiiiiiiee i 115
Understanding the user log cache (ULC) architecture........... 116
When t0 USE ALS.......ooiiiiiiie et 116
USING the ALSoiiiiiii et 117
CHAPTER 7 HOW INAEXES WOTK ...vvviiiiiiiiiie et 119
TYPES OF INAEXES ..o 120
[aTo o o F= Vo = USSR 120
INAEX SIZE ..ot 122
Clustered indexes on allpages-locked tablescccceeeneee. 122
Clustered indexes and select operations............cccceeeviieeeennes 123
Clustered indexes and insert operationscccccceeeviiiivvnnen. 124
Page splitting on full data pages........cccccceevviiviieeeieeeniiiiiieenn, 125
Page splitting on index pages........ccccccceeeeiviiiviiieeee e 127
Performance impacts of page splitting..........ccccccevevviiiiinennnn. 127
OVErfIOW PAGES......uviiiiiiiiiiiiiiiie e 128
Clustered indexes and delete operationsccccccceevvvivnnen. 129
NoNCluStered INAEXESoieiiuiie i 131
Leaf pages revisited..........cocve i 132
Nonclustered iNdeX StrUCtUIeocceeeiiiieee e 132
Nonclustered indexes and select operations......................... 134
Nonclustered index performance..........cccocoeeevieeeeicienen e, 135
Nonclustered indexes and insert operations...............cccc...... 135
Nonclustered indexes and delete operations..............cccce..... 136
Clustered indexes on data-only-locked tables....................... 138
INAEX COVEIING 1oeeiiiiiiiiiee ettt e e 138
Covering matching iNdeX SCaNS.........ccuvvvveeeeeiiiiiiiiieee e 139
Covering nonmatching index SCanS.........ccccovcvvvevvieensiniiinnnn, 140
Indexes and CaChING........cooviiiiiiiii i 141
Using separate caches for data and index pages.................. 142
Index trips through the cachecccccoiiiiii i, 142

1o Lo L= PP PP PTPPPOPRPPPPPPP 145

vi Adaptive Server Enterprise

About This Book

Audience

How to use this book

Related documents

Performance & Tuning:Locking

Thismanual isintended for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on atest
machine.

Chapter 1, “Introduction to Performance and Tuning” gives ageneral
description of this manual and the other manuals within the Performance
and Tuning Seriesfor Adaptive Server.

Chapter 2, “Locking Overview” describesthetypesof locksthat Adaptive
Server uses and what types of locks are acquired during query processing.

Chapter 3, “Locking Configuration and Tuning” describes the impact of
locking on performance and describes the tools to analyze locking
problems and configure locking.

Chapter 4, “Using Locking Commands” describesthe commands that set
locking schemes for tables and control isolation levels and other locking
behavior during query processing.

Chapter 5, “L ocking Reports’ describesthe system proceduresthat report
on locks and lock contention.

Chapter 6, “Indexing for Performance” provides guidelinesand examples
for choosing indexes.

Chapter 7, “How IndexesWork” providesinformation on how indexesare
used to resolve queries.

e Theremaining manuals for the Performance and Tuning Series are:
e Performance and Tuning: Basics
e Performance and Tuning: Optimizer and Abstract Plans
e Performance and Tuning: Monitoring and Analyzing

e Therelease bulletin for your platform — contains last-minute
information that was too late to be included in the books.

Vii

viii

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform — describesinstal lation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

Reference Manual — contains detailed information about all Transact-SQL
commands, functions, procedures, and data types. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

The Utility Guide—documentsthe Adaptive Server utility programs, such
asisql and bcp, which are executed at the operating system level.

The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, data types, and utilities in a pocket-sized book.
Available only in print version.

The System Tables Diagram —illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Adaptive Server Enterprise

About This Book

e Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

e Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

e Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as data types, functions, and stored procedures in the Adaptive
Server database.

e XML Servicesin Adaptive Server Enterprise—describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that comprise XML Services.

e Using Sybase Failover in a High Availability System — provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in ahigh availability system.

e Job Scheduler User’s Guide — provides instructions on how to create and
schedule jobs on alocal or remote Adaptive Server using the command
line or agraphical user interface (GUI).

e Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

e EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

e XAlnterface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

e Glossary — defines technical terms used in the Adaptive Server
documentation.

e SybasejConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access data stored
in relational database management systems.

e Full-Text Search Specialty Data Sore User’s Guide —describeshow to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Performance & Tuning:Locking iX

Other sources of
information

Sybase certifications
on the Web

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

The Getting Started CD contains rel ease bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the Technical Library CD. It isincluded with
your software. To read or print documents on the Getting Started CD you
need Adobe Acrobat Reader (downloadable at no charge from the Adobe
Web site, using alink provided on the CD).

The Technical Library CD contains product manuals and is included with
your software. The DynaText reader (included on the Technical Library
CD) allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

The Technical Library Product Manuals Web siteisan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find linksto
EBFs/Updates, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

Finding the latest information on product certifications

1

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.
Select a product name from the product list and click Go.
Select the Certification Report filter, specify atime frame, and click Go.

Adaptive Server Enterprise

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/

About This Book

Sybase EBFs and
software updates

Conventions

Formatting SQL
statements

Font and syntax
conventions

5 Click aCertification Report title to display the report.

0 Creating a personalized view of the Sybase Web site (including support

pages)
Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software updates

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Select aproduct.
4 Specify atime frame and click Go.

5 Click thelInfoicon to display the EBF/Update report, or click the product
description to download the software.

This section describes conventions used in this manual.

SQL isafree-formlanguage. Thereare no rulesabout the number of wordsyou
can put on aline or where you must break aline. However, for readability, all
examples and syntax statements in this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have more than one part
extend to additional lines, which are indented.

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element

Example

Command names, command option names, utility select
names, utility flags, and other keywordsarebold. sp_configure

Database names, datatypes, file names and path master database

names arein italics.

Performance & Tuning:Locking Xi

http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

Element

Example

Variables, or words that stand for values that you
fill in, areinitalics.

sel ect
column_name

from
table_name

wher e
search_conditions

Parentheses areto be typed as part of the command.

conput e

row_aggr egat e
(

col umm_nane

)

Curly braces indicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed options is optional. Do not type the
brackets.

[anchovi es]

The vertical bar means you may select only one of
the options shown.

{di e_on_your_feet |
| live_on_your_feet}

Iive_on_your_knees

The commameans you may choose as many of the
options shown asyou like, separating your choices
with commasto be typed as part of the command.

[extra_cheese, avocados, sour_creani

Anellipsis(...) means that you can repeat the last
unit as many times asyou like.

buy thing = price [cash | check |
credit]

[, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose amethod of payment: one of the items
enclosed in square brackets. You may a so choose to buy
additional things: as many of them asyou like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

* Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevi ce [devi ce_nane]

or, for acommand with more options:

Xii

Adaptive Server Enterprise

About This Book

Case

Expressions

sel ect col um_nane
fromtabl e_nane
where search_conditions

In syntax statements, keywords (commands) arein normal font and identifiers
arein lowercase: normal font for keywords, italics for user-supplied words.

« Examples of output from the computer appear as follows:
0736 New Age Books Boston MA
0877 Bi nnet & Hardl ey Washi ngton DC
1389 Al godata Infosystens Berkel ey CA

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such as table names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.
Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers, variables, or

parameters

logical expression

An expression that returns TRUE, FALSE, or UNKNOWN

constant expression

An expression that always returns the same value, such as “5+3" or “ABCDE”

float_expr Any floating-point expression or expression that implicitly converts to a floating
vaue

integer_expr Any integer expression, or an expression that implicitly converts to an integer value

numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression

An expression that returns asingle binary or varbinary value

Examples

Many of the examplesin this manual are based on a database called pubtune.
The database schema s the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

Performance & Tuning:Locking Xiii

The pubtune database is not provided with Adaptive Server. Since most of the
exampl es show the results of commands such as set showplan and set statistics
i0, running the queriesin thismanual on pubs2 tableswill not produce the same
1/O results, and in many cases, will not produce the same query plans as those
shown here.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

Xiv Adaptive Server Enterprise

CHAPTER 1

Performance and Tuning: Locking

Introduction to Performance and
Tuning

Tuning Adaptive Server Enterprise for performance can involve several
processes in analyzing the “Why?" of slow performance, contention,
optimizing and usage.

Thismanual isfor usein setting up databases with good locking schemes
and indexes.

Adaptive Server locks the tables, data pages, or data rows currently used
by active transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data within and across
transactions. Locking is needed in amultiuser environment, since several
users may be working with the same data at the same time.

Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and del ete operations can take
longer when alarge number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The remaining manuals for the Performance and Tuning Series are:
e Performance and Tuning: Basics

Thismanual covers the basics for understanding and investigating
performance questions in Adaptive Server. It guides you in how to
look for the places that may be impeding performance.

e Performance and Tuning: Optimizer and Abstract Plans

The Optimizer inthe Adaptive Server takes aquery and findsthe best
waly to execute it. The optimization is done based on the statistics for
a database or table. The optimized plan stays in effect until the
statistics are updated or the query changes. You can update the
statistics on the entire table or by sampling on a percentage of the
data.

e Performance and Tuning: Monitoring and Analyzing

Adaptive Server employs reports for monitoring the server. This manual
explains how statistics are obtained and used for monitoring and
optimizing. The stored procedure sp_sysmon produces a large report that
shows the performance in Adaptive Server.

You can also use the Sybase Monitor in Sybase Central for realtime
information on the status of the server.

Each of the manuals has been set up to cover specific information that may be
used by the system administrator and the database administrator.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

This chapter discusses basic |ocking concepts and the locking schemes
and types of locks used for databasesin Adaptive Server.

Topic Page
How locking affects performance 4
Overview of locking 4
Granularity of locks and locking schemes 6
Types of locks in Adaptive Server 9
Lock compatibility and lock sufficiency 18
How isolation levels affect locking 19

L ock types and duration during query processing 26
Pseudo column-level locking 34

The following chapters provide more information on locking:

e Chapter 3, “Locking Configuration and Tuning,” describes
performance considerations and suggestions and configuration
parameters that affect locking.

e Chapter 4, “Using Locking Commands,” describes commands that
affect locking: specifying the locking schemefor tables, choosing an
isolation level for asession or query, the lock table command, and
server or session level lock time-outs periods.

e Chapter 5, “Locking Reports,” describes commandsfor reporting on
locks and locking behavior, including sp_who, sp_lock, and
sp_object_stats.

Performance and Tuning: Locking 3

How locking affects performance

How locking affects performance

Adaptive Server protects the tables, data pages, or datarows currently used by
active transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data within and across transactions.
Locking is needed in amultiuser environment, since several users may be
working with the same data at the same time.

Locking affects performance when one process holds locks that prevent
another process from accessing needed data. The processthat isblocked by the
lock deeps until thelock isreleased. Thisis called lock contention.

A more serious locking impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have alock on a separate page
or table and each wants to acquire alock on the same page or table held by the
other process. The transaction with the least accumulated CPU timeiskilled
and al of itswork is rolled back.

Understanding the types of locksin Adaptive Server can help you reduce lock
contention and avoid or minimize deadlocks.

Overview of locking

Consistency of data means that if multiple users repeatedly execute a series of
transactions, the results are correct for each transaction, each time.
Simultaneous retrievals and modifications of data do not interfere with each
other: the results of queries are consistent.

For example, in Table 2-1, transactions T1 and T2 are attempting to access data
at approximately the sametime. T1 is updating values in a column, while T2
needs to report the sum of the values.

4 Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Table 2-1: Consistency levels in transactions

T1 Event Sequence T2
begi n transaction T1land T2 start. begi n transaction
updat e account T1 updates balance
set bal ance = bal ance - 100 for one account by
wher e acct_nunber = 25 subtracting $100.
T2 queriesthe sum sel ect sum(bal ance)

from account

balance, which is off
where acct _nunmber < 50

by $100 at this point
in time—should it
return results now, or
wait until T1 ends?

commit transaction

updat e account
set bal ance = bal ance + 100

where acct_nunber = 45 T1 updatesbalance of
the other account by
conmmit transaction adding the $100.
T1 ends.

If transaction T2 runs before T1 starts or after T1 completes, either execution
of T2 returnsthe correct value. But if T2 runsin the middle of transaction T1
(after the first update), the result for transaction T2 will be different by $100.
While such behavior may be acceptable in certain limited situations, most
database transactions need to return correct consistent results.

By default, Adaptive Server locks the dataused in T1 until the transactionis
finished. Only then doesit allow T2 to complete its query. T2 “sleeps,” or
pauses in execution, until thelock it needsit isreleased when T1 is completed.

The alternative, returning data from uncommitted transactions, is known as a
dirty read. If the results of T2 do not need to be exact, it can read the
uncommitted changesfrom T1, and return resultsimmediately, without waiting
for the lock to be released.

Locking is handled automatically by Adaptive Server, with optionsthat can be
set at the session and query level by the user. You must know how and when to
use transactions to preserve the consistency of your data, while maintaining
high performance and throughpuit.

Performance and Tuning: Locking 5

Granularity of locks and locking schemes

Granularity of locks and locking schemes

Allpages locking

The granularity of locks in a database refersto how much of the dataiislocked
at onetime. In theory, adatabase server can lock as much asthe entire database
or as little as one column of data. Such extremes affect the concurrency
(number of usersthat can access the data) and locking overhead (amount of
work to process lock requests) in the server. Adaptive Server supportslocking
at the table, page, and row level.

By locking at higher levels of granularity, the amount of work required to
obtain and manage locks is reduced. If a query needsto read or update many
rowsin atable:

* Itcanacquire just one table-level lock
» Itcanacquirealock for each page that contained one of the required rows
* Itcanacquire alock on each row

Lessoverall work isrequired to use atable-level lock, but large-scalelocks can
degrade performance, by making other users wait until locks are released.
Decreasing the lock size makes more of the data accessible to other users.
However, finer granularity locks can also degrade performance, since more
work is necessary to maintain and coordinate the increased number of locks.
To achieve optimum performance, alocking scheme must balance the needs of
concurrency and overhead.

Adaptive Server provides these locking schemes:

» Allpages locking, which locks datapages and index pages
» Datapages locking, which locks only the data pages

» Datarows locking, which locks only the data rows

For each locking scheme, Adaptive Server can choose to lock the entire table
for queries that acquire many page or row locks, or can lock only the affected
pages or rows.

Allpageslocking locks both data pages and index pages. When aquery updates
avauein arow in an allpages-locked table, the data page is locked with an
exclusive lock. Any index pages affected by the update are also |ocked with
exclusivelocks. Theselocks are transactional, meaning that they are held until
the end of the transaction.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Figure 2-1 shows the locks acquired on data pages and indexes while a new
row isbeing inserted into an allpages-locked table.

Figure 2-1: Locks held during allpages locking

insert authors values ("Mark", "Twain")

Index on FirstName Index on LastName

Index Leaf

Index Leaf Page 10

Mark 10,1 Mark Twain Twain 101 7]

| Yy T
Legend

Locked
Unlocked

In many cases, the concurrency problems that result from allpages locking
arise from the index page locks, rather than the locks on the data pages
themselves. Data pages have longer rows than indexes, and often have a small
number of rows per page. If index keys are short, an index page can store
between 100 and 200 keys. An exclusivelock on anindex page can block other
users who need to access any of the rows referenced by the index page, afar
greater number of rows than on alocked data page.

Performance and Tuning: Locking 7

Granularity of locks and locking schemes

Datapages locking

In datapages locking, entire data pages are still locked, but index pages are not
locked. When arow needs to be changed on a data page, that page is locked,
and the lock is held until the end of the transaction. The updates to the index
pages are performed using latches, which are non transactional. Latches are
held only aslong as required to perform the physical changes to the page and
are then released immediately. Index page entries are implicitly locked by
locking the datapage. No transactional locksare held onindex pages. For more
information on latches, see “Latches’ on page 17.

Figure 2-2 shows an insert into a datapages-locked table. Only the affected
data page is locked.

Figure 2-2: Locks held during datapages locking

insert authors values ("Mark", "Twain")

Index on FirstName Index on LastName

Index Leaf Page 10 Index Leaf

Mark 10,1 Mark Twain Twain 10,1

Legend
Locked

Unlocked

8 Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Datarows locking

In datarows locking, row-level locks are acquired on individual rows on data
pages. Index rows and pages are not locked. When arow needs to be changed
on adata page, anon transactional latch is acquired on the page. The latchis
held while the physical change is made to the data page, and then thelatch is
released. The lock on the datarow is held until the end of the transaction. The
index rows are updated, using latches on the index page, but are not locked.
Index entries are implicitly locked by acquiring alock on the data row.

Figure 2-3 shows an insert into adatarows-locked table. Only the affected data
row islocked.

Figure 2-3: Locks held during datarows locking
insert authors values ("Mark", "Twain")

Index on FirstName Index on LastName
Index Leaf Page 10 Index Leaf
Mark 10,1 Mark Twain Twain 10,1
[T T 7
Legend T‘T
Locked
Unlocked

Types of locks in Adaptive Server

Adaptive Server has two levels of locking:

« Fortablesthat use allpages|ocking or datapages|ocking, either pagelocks
or table locks.

« For tablesthat use datarows locking, either row locks or table locks

Performance and Tuning: Locking 9

Types of locks in Adaptive Server

Page or row locks arelessrestrictive (or smaller) than table locks. A pagelock
locks all the rows on data page or an index page; atable lock locks an entire
table. A row lock locks only asinglerow on apage. Adaptive Server uses page
or row locks whenever possible to reduce contention and to improve
concurrency.

Adaptive Server uses atable lock to provide more efficient locking when an
entiretable or alarge number of pages or rowswill be accessed by a statement.
Locking strategy is directly tied to the query plan, so the query plan can be as
important for its locking strategies as for its I/O implications. If an update or
delete statement has no useful index, it performs atable scan and acquires a
table lock. For example, the following statement acquires atable lock:

updat e account set bal ance = bal ance * 1.05

If an update or delete statement uses an index, it begins by acquiring page or
row locks. It triesto acquire atable lock only when alarge number of pages or
rows are affected. To avoid the overhead of managing hundreds of locks on a
table, Adaptive Server usesalock promotion threshold setting. Once a scan
of atable accumulates more page or row locks than allowed by the lock
promotion threshold, Adaptive Server triesto issue atablelock. If it succeeds,
the page or row locks are no longer necessary and are released. See
“Configuring locks and lock promotion thresholds’ on page 44 for more
information.

Adaptive Server chooses which type of lock to use after it determinesthe query
plan. The way you write a query or transaction can affect the type of lock the
server chooses. You can also forcethe server to make certain locks more or less
restrictive by specifying options for select queries or by changing the
transaction’sisolation level. See“ Controlling isolation levels’ on page 66 for
moreinformation. Applications can explicitly request atablelock with thelock
table command.

Page and row locks

10

The following describes the types of page and row locks:
* Sharedlocks

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Adaptive Server applies shared locksfor read operations. If ashared lock
has been applied to a data page or data row or to an index page, other
transactions can a so acquire ashared lock, even when thefirst transaction
is active. However, no transaction can acquire an exclusive lock on the
page or row until all shared locks on the page or row are released. This
meansthat many transactions can simultaneously read the page or row, but
no transaction can change data on the page or row while a shared lock
exists. Transactions that need an exclusive lock wait or “block” for the
release of the shared locks before continuing.

By default, Adaptive Server releases shared locks after it finishes scanning
the page or row. It does not hold shared locks until the statement is
completed or until the end of the transaction unless requested to do so by
the user. For more details on how shared locks are applied, see “Locking
for select queries at isolation Level 1" on page 29.

¢ Exclusive locks

Adaptive Server applies an exclusive lock for a data modification
operation. When a transaction gets an exclusive lock, other transactions
cannot acquire alock of any kind on the page or row until the exclusive
lock isreleased at the end of itstransaction. The other transactions wait or
“block” until the exclusive lock is released.

e Update locks

Adaptive Server applies an update lock during the initial phase of an
update, delete, or fetch (for cursorsdeclared for update) operation whilethe
page or row isbeing read. The update lock allows shared |ocks on the page
or row, but does not allow other update or exclusive locks. Update locks
help avoid deadlocks and lock contention. If the page or row needs to be
changed, the update lock is promoted to an exclusive lock as soon as no
other shared locks exist on the page or row.

In general, read operations acquire shared locks, and write operations acquire
exclusive locks. For operations that delete or update data, Adaptive Server
applies page-level or row-level exclusive and update locks only if the column
used in the search argument is part of an index. If noindex exists on any of the
search arguments, Adaptive Server must acquire atable-level lock.

The examplesin Table 2-2 show what kind of page or row locks Adaptive
Server uses for basic SQL statements. For these examples, there is an index
acct_number, but no index on balance.

Performance and Tuning: Locking 11

Types of locks in Adaptive Server

Table 2-2: Page locks and row locks

Statement Allpages-Locked Table Datarows-Locked Table
sel ect bal ance Shared page lock Shared row lock
from account
where acct _nunber = 25
i nsert account val ues Exclusive page lock on data page Exclusive row lock
(34, 500) and exclusive page lock on leaf-
level index page
del et e account Update page locks followed by Update row locks followed by
wher e acct_nunber = 25 exclusive page lockson datapages exclusive row locks on each
and exclusive page locks on leaf- affected row
level index pages

updat e account
set balance = 0
wher e acct _nunber

Update page lock on datapageand Update row lock followed by

exclusive page lock on data page exclusive row lock
25

Table locks

12

The following describes the types of table locks.

Intent lock

Anintent lock indicates that page-level or row-level locks are currently
held on atable. Adaptive Server applies an intent table lock with each
shared or exclusive page or row lock, so an intent lock can be either an
exclusive lock or ashared lock. Setting an intent lock prevents other
transactions from subsequently acquiring conflicting table-level locks on
the table that contains that locked page. Anintent lock is held aslong as
page or row locks are in effect for the transaction.

Shared lock

Thislock issimilar to ashared page or lock, except that it affectsthe entire
table. For example, Adaptive Server appliesashared tablelock for aselect
command with aholdlock clause if the command does not use an index. A
create nonclustered index command al so acquires a shared table lock.

Exclusive lock

Thislock is similar to an exclusive page or row lock, except it affects the
entiretable. For example, Adaptive Server applies an exclusive table lock
during acreate clustered index command. update and delete statements
require exclusive table locks if their search arguments do not reference
indexed columns of the object.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

The examples in Table 2-3 show the respective page, row, and table locks of
page or row locks Adaptive Server uses for basic SQL statements. For these

examples, thereis an index acct_num.

Table 2-3: Table locks applied during query processing

Statement

Allpages-Locked Table

Datarows-Locked Table

sel ect bal ance from account
wher e acct _nunber = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

insert account val ues
(34, 500)

Intent exclusive table lock
Exclusive page lock on data page
Exclusive page lock on leaf index
pages

Intent exclusive table lock
Exclusive row lock

del et e account

Intent exclusive table lock

Intent exclusive table lock

where acct_nunber = 25 Update page locks followed by Update row locks followed by
exclusive page locks on datapages exclusive row locks on data
and leaf-level index pages rows

updat e account With an index on acct_number, With anindex onacct_number,

set balance = 0 intent exclusive table lock intent exclusive table lock

where acct_number = 25 Update page locks followed by Update row locks followed by

exclusive page locks on data pages
and leaf-level index pages

With no index, exclusive table lock

exclusive row locks on data
rows

With no index, exclusive table

lock

Demand locks

Exclusive table locks are al so applied to tables during select into operations,
including temporary tables created with tempdb..tablename Syntax. Tables
created with #tablename are restricted to the sole use of the processthat created
them, and are not locked.

Adaptive Server setsademand lock to indicate that atransaction isnext inthe
queue to lock atable, page, or row. Since many readers can all hold shared
locks on a given page, row, or table, tasks that require exclusive locks are
queued after atask that already holds ashared lock. Adaptive Server allows up
to three readers’ tasks to skip over a queued update task.

After awrite transaction has been skipped over by three tasks or families (in
the case of queries running in parallel) that acquire shared locks, Adaptive
Server gives ademand lock to the write transaction. Any subsequent requests
for shared locks are queued behind the demand lock, as shown in Figure 2-4.

Performance and Tuning: Locking 13

Types of locks in Adaptive Server

Assoon asthe readers queued ahead of the demand lock releasetheir locks, the
write transaction acquiresitslock and is allowed to proceed. The read
transactions queued behind the demand lock wait for the write transaction to
finish and release its exclusive lock.

Demand locking with serial execution

Figure 2-4 illustrates how the demand lock scheme works for serial query
execution. It shows four tasks with shared locks in the active lock position,
meaning that al four tasks are currently reading the page. These tasks can
access the same page simultaneously because they hold compatiblelocks. Two
other tasks are in the queue waiting for locks on the page. Here is a series of
events that could lead to the situation shown in Figure 2-4:

14

Originally, task 2 holds a shared lock on the page.

Task 6 makesan exclusivelock request, but must wait until the shared lock
is released because shared and exclusive locks are not compatible.

Task 3 makesashared lock request, whichisimmediately granted because
all shared locks are compatible.

Tasks 1 and 4 make shared lock requests, which are also immediately
granted for the same reason.

Task 6 has now been skipped three times, and is granted a demand lock.

Task 5 makes a shared lock request. It is queued behind task 6's exclusive
lock request because task 6 holds ademand lock. Task 5 isthe fourth task
to make a shared page request.

After tasks 1, 2, 3, and 4 finish their reads and release their shared locks,
task 6 is granted its exclusive lock.

After task 6 finishesitswrite and rel easesits exclusive page lock, task 5is
granted its shared page lock.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Figure 2-4: Demand locking with serial query execution

Active lock Demand lock Sleep wait

Shared
page

Exclusive
page

Page

\
AN /

Demand locking with parallel execution

When queriesarerunning in parallel, demand locking treatsall the shared locks
from afamily of worker processes asif they were asingle task. The demand
lock permits reads from three families (or atotal of three serial tasks and
families combined) before granting the exclusive lock.

Figure 2-5 illustrates how the demand lock scheme workswhen parallel query
execution is enabled. The figure shows six worker processes from three
families with shared locks. A task waits for an exclusive lock, and aworker
process from afourth family waits behind the task. Here is a series of events
that could lead to the situation shown in Figure 2-5:

e Originally, worker process 1:3 (worker process 3 from afamily with
family ID 1) holds a shared lock on the page.

e Task 9 makesan exclusivelock request, but must wait until the shared lock
isreleased.

e Worker process 2:3 reguests a shared lock, which isimmediately granted
because shared locks are compatible. The skip count for task 9is now 1.

Performance and Tuning: Locking 15

Types of locks in Adaptive Server

16

e Worker processes 1:1, 2:1, 3:1, task 10, and worker processes 3:2 and 1.2
are consecutively granted shared lock requests. Sincefamily ID 3 and task
10 have no prior locks queued, the skip count for task 9 isnow 3, and task
9 isgranted a demand | ock.

e Finaly, worker process 4:1 makes a shared lock request, but it is queued
behind task 9's exclusive lock request.

e Any additional shared lock requests from family IDs 1, 2, and 3 and from
task 10 are queued ahead of task 9, but all requests from other tasks are
queued after it.

« Afterall thetasksintheactivelock positionreleasetheir shared locks, task
9isgranted its exclusive lock.

» After task 9 releasesits exclusive page lock, task 4:1 is granted its shared
page lock.

Figure 2-5: Demand locking with parallel query execution

Active lock Demand lock Sleep wait

Exclusive Shared

page

Page

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Range locking for serializable reads

Latches

Rowsthat can appear or disappear from aresults set are called phantoms. Some
queries that require phantom protection (queries at isolation level 3) use range
locks.

Isolation level 3 requires serializable reads within the transaction. A query at
isolation level 3 that performs two read operationswith the same query clauses
should return the same set of results each time. No other task can be allowed to:

* Modify one of the result rows so that it no longer qualifies for the
serializable read transaction, by updating or deleting the row

e Modify arow that is not included in the serializable read result set so that
the row now qualifies, or insert arow that would qualify for the result set

Adaptive Server uses range locks, infinity key locks, and next-key locks to
protect against phantoms on data-only-locked tables. Allpages-locked tables
protect against phantoms by holding locks on the index pages for the
serializable read transaction.

When aquery at isolation level 3 (serializable read) performs arange scan
using an index, all the keys that satisfy the query clause are locked for the
duration of the transaction. Also, the key that immediately followstherangeis
locked, to prevent new values from being added at the end of therange. If there
isno next value in the table, an infinity key lock is used as the next key, to
ensure that no rows are added after the last key in the table.

Range locks can be shared, update, or exclusive locks; depending on the
locking scheme, they are either row locks or page locks. sp_lock output shows
“Famdur, Range” in the context column for range locks. For infinity key locks,
sp_lock shows alock on a nonexistent row, row 0 of the root index page and
“Fam dur, Inf key” in the context column.

Every transaction that performs an insert or update to a data-only-locked table
checks for range locks.

Latches are non transactional synchronization mechanisms used to guarantee
the physical consistency of a page. While rows are being inserted, updated or
deleted, only one Adaptive Server process can have access to the page at the
sametime. Latches are used for datapages and datarows locking but not for
alpages locking.

The most important distinction between alock and alatch is the duration:

Performance and Tuning: Locking 17

Lock compatibility and lock sufficiency

e Alock can persist for along period of time: while apageisbeing scanned,
while adisk read or network write takes place, for the duration of a
statement, or for the duration of a transaction.

e Alatchisheld only for the timerequired to insert or move afew byteson
adata page, to copy pointers, columns or rows, or to acquire alatch on
another index page.

Lock compatibility and lock sufficiency

Two basic concepts underlie issues of locking and concurrency:

* Lock compatibility: if task holds alock on a page or row, can another row
also hold alock on the page or row?

» Lock sufficiency: for the current task, isthe current lock held on a page or
row sufficient if the task needs to access the page again?

Lock compatibility affects performance when users needsto acquire alock on
arow or page, and that row or pageis already locked by another user with an
incompatible lock. The task that needs the lock waits, or blocks, until the
incompatible locks are rel eased.

Lock sufficiency workswith lock compatibility. If alock is sufficient, the task
does not need to acquire adifferent type of lock. For example, if atask updates
arow in atransaction, it holds an exclusive lock. If the task then selects from
the row before committing the transaction, the exclusive lock on the row is
sufficient; the task does not need to make an additional lock request. The
opposite caseis not true: if atask holds a shared lock on a page or row, and
wantsto update the row, the task may need to wait to acquire its exclusive lock
if other tasks also hold shared locks on the page.

Table 2-4 summarizesthe information about lock compatibility, showing when
locks can be acquired immediately.

Table 2-4: Lock compatibility

Can another process immediately acquire:

A Shared An Update An Exclusive A Shared An Exclusive
If one process has: Lock? Lock? Lock? Intent Lock? Intent Lock?
A Shared Lock Yes Yes No Yes No
An Update Lock Yes No No N/A N/A
An Exclusive Lock No No No No No

18

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Can another process immediately acquire:

A Shared An Update An Exclusive A Shared An Exclusive
If one process has: Lock? Lock? Lock? Intent Lock? Intent Lock?
A Shared Intent Lock Yes N/A No Yes Yes
An Exclusive Intent Lock No N/A No Yes Yes

Table 2-5 shows the lock sufficiency matrix.

Table 2-5: Lock

sufficiency

Is that lock sufficient if the task needs:

If a task has: A Shared Lock An Update Lock An Exclusive Lock
A Shared Lock Yes No No
An Update Lock Yes Yes No
An Exclusive Lock Yes Yes Yes

How isolation levels affect locking

The SQL standard defines four levels of isolation for SQL transactions. Each
isolation level specifies the kinds of interactions that are not permitted while
concurrent transactions are executing—that is, whether transactions are
isolated from each other, or if they can read or update information in use by
another transaction. Higher isolation level sinclude the restrictionsimposed by

the lower levels.

Theisolation levelsare shownin Table 2-6, and described in more detail on the

following pages.

Table 2-6: Transaction isolation levels

Number Name Description

0 read uncommitted The transaction is allowed to read uncommitted
changesto data.

1 read committed The transaction is allowed to read only committed
changesto data.

2 repeatable read The transaction can repeat the same query, and no
rows that have been read by the transaction will have
been updated or deleted.

3 serializable read The transaction can repeat the same query, and

receive exactly the same results. No rows can be
inserted that would appear in the result set.

Performance and Tuning: Locking

19

How isolation levels affect locking

Isolation Level O,

You can choosetheisolation level for all select queries during asession, or you
can choose the isolation level for a specific query or table in atransaction.

Atall isolationlevels, al updates acquire exclusivelocks and hold them for the
duration of the transaction.

Note For tablesthat usetheallpages|ocking scheme, requesting isolation level
2 dso enforcesisolation level 3.

read uncommitted

Level 0, also known as read uncommitted, allows a task to read uncommitted
changes to data in the database. Thisis aso known as a dirty read, since the
task can display resultsthat arelater rolled back. Table 2-7 shows asel ect query
performing a dirty read.

Table 2-7: Dirty reads in transactions

T3

Event Sequence T4

begi n transaction

updat e account

T3 and T4 start. begi n transaction

T3 updates balance

set bal ance = bal ance - 100 for one account by

where acct _nunber = 25 subtracting $100.
T4 queries current sel ect sun(bal ance)
sum of balance for from account
ACCOUNtS. where acct _nunber < 50
T4 ends commit transaction

rol I back transaction

T3rolls back,
invalidating the
results from T4.

20

If transaction T4 queries the table after T3 updatesit, but before it rolls back
the change, the amount calculated by T4 is off by $100.The update statement
in transaction T3 acquires an exclusive lock on account. However, transaction
T4 does not try to acquire a shared lock before querying account, so it is not
blocked by T3. The opposite is also true. If T4 beginsto query accounts at
isolation level O before T3 starts, T3 could still acquire its exclusive lock on
accounts while T4's query executes, because T4 does not hold any lockson the
pages it reads.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Atisolation level 0, Adaptive Server performs dirty reads by:

e Allowing another task to read rows, pages, or tables that have exclusive
locks; that is, to read uncommitted changes to data.

* Not applying shared locks on rows, pages or tables being searched.

Any datamodificationsthat are performed by T4 whiletheisolation level isset
to 0 acquire exclusivelocksat therow, page, or tablelevel, and block if the data
they need to change islocked.

If the table uses allpages locking, a unique index is required to perform an
isolation level O read, unlessthe databaseis read-only. Theindex isrequired to
restart the scan if an update by another process changes the query’s result set
by modifying the current row or page. Forcing the query to use atable scan or
anon unique index can lead to problems if there is significant update activity
on the underlying table, and is not recommended.

Applications that can use dirty reads may see better concurrency and reduced
deadl ocks than when the same data is accessed at a higher isolation level. If
transaction T4 requires only an estimate of the current sum of account
balances, which probably changesfrequently in avery activetable, T4 should
query the table using isolation level 0. Other applications that require data
consistency, such as queries of deposits and withdrawals to specific accounts
in the table, should avoid using isolation level 0.

Isolation level 0 can improve performance for applications by reducing lock
contention, but can impose performance costs in two ways:

« Dirty reads make in-cache copies of dirty datathat the isolation level 0
application needs to read.

e If adirty read is active on arow, and the data changes so that the row is
moved or deleted, the scan must be restarted, which may incur additional
logical and physical 1/0.

During deferred update of a data row, there can be a significant timeinterval
between the del ete of the index row and the insert of the new index row. During
thisinterval, thereis no index row corresponding to the data row. If a process
scanstheindex during thisinterval at isolation level O, it will not return the old
or new value of the datarow. See “ Deferred updates’ on page 97 in
Performance and Tuning: Optimizer.

sp_sysmon reports on these factors. See “Dirty read behavior” on page 88 in
Performance and Tuning: Monitoring and Analyzing.

Performance and Tuning: Locking 21

How isolation levels affect locking

Isolation Level 1, read committed

Level 1, also known as read committed, prevents dirty reads. Queries at level
1 can read only committed changesto data. At isolationlevel 1, if atransaction
needs to read arow that has been modified by an incomplete transaction in
another session, the transaction waits until the first transaction completes
(either commits or rolls back.)

For example, compare Table 2-8, showing a transaction executed at isolation
level 1, to Table 2-7, showing a dirty read transaction.

Table 2-8: Transaction isolation level 1 prevents dirty reads

T5

Event Sequence T6

begin transaction

updat e account

T5 and T6 start. begi n transaction

T5 updates account

set bal ance = bal ance - 100 after getting

wher e acct_nunber

=25 exclusive lock.

T6 triesto get shared sel ect sum(bal ance)

lock to query account \fN;om account
but must wait until ere acct_nunber < 50

T5 releasesits lock.

rol | back transaction

T5 ends and releases
its exclusive lock.
commit transaction
T6 gets shared lock,
queries account, and
ends.

22

When the update statement in transaction T5 executes, Adaptive Server applies
an exclusivelock (arow-level or page-level lock if acct_number isindexed;
otherwise, atable-level lock) on account.

If T5 holdsan exclusive tablelock, T6 blockstrying to acquireits shared intent
tablelock. If T5 holds exclusive page or exclusive row locks, T6 can begin
executing, but isblocked whenit triesto acquire ashared lock on apage or row
locked by T5. The query in T6 cannot execute (preventing the dirty read) until
the exclusive lock isreleased, when T5 ends with the rollback.

While the query in T6 holds its shared lock, other processes that need shared
locks can access the same data, and an update lock can also be granted (an
update lock indicates the read operation that precedes the exclusive-lock write
operation), but no exclusivelocks are allowed until all shared locks have been
released.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Isolation Level 2,

repeatable read

Level 2 prevents nonrepeatable reads. These occur when one transaction
reads arow and a second transaction modifies that row. If the second
transaction commits its change, subsequent reads by the first transaction yield
results that are different from the original read. Isolation level 2 is supported
only on data-only-locked tables. In asession at isolation level 2, isolation level
3isalso enforced on any tables that use the allpages locking scheme. Table 2-
9 shows a nonrepeatable read in a transaction at isolation level 1.

Table 2-9: Nonrepeatable reads in transactions

T7

Event Sequence T8

begi n transaction

sel ect bal ance
from account
wher e acct _nunber

sel ect bal ance
from account
wher e acct _nunber

comrit transaction

T7 and T8 start. begi n transaction

T7 queries the balance
for one account.

= 25
T8 updatesthe balance
for that same account. update account
set bal ance = bal ance - 100
T8 ends where acct _nunmber = 25
T7 makes same query commit transaction
as before and gets
different results.
= 25

T7 ends.

Isolation Level 3,

If transaction T8 modifies and commits the changes to the account table after
thefirst query in T7, but before the second one, the same two queriesin T7
would produce different results. Isolation level 2 blocks transaction T8 from
executing. It would also block atransaction that attempted to delete the
selected row.

serializable reads

Level 3 prevents phantoms. These occur when one transaction reads a set of
rowsthat satisfy asearch condition, and then asecond transaction modifiesthe
data (through an insert, delete, or update statement). If the first transaction
repeats the read with the same search conditions, it obtains a different set of
rows. In Table 2-10, transaction T9, operating at isolation level 1, seesa
phantom row in the second query.

Performance and Tuning: Locking 23

How isolation levels affect locking

Table 2-10: Phantoms in transactions

T9 Event Sequence T10
begi n transaction T9 and T10 start. begi n transaction
sel ect * from account T9 queriesacertain set
where acct _nunber < 25 of rows.
T10 inserts arow that insert into account
meets the criteria for (acct _number, bal ance)

the query in TO. val ues (19, 500)

T10 ends commit transaction
sel ect * from account

where acct_nunmber < 25 T9 makes the same

query and getsa
commit transaction new row.

T9 ends.

If transaction T10 inserts rows into the table that satisfy T9's search condition
after the T9 executes the first select, subsequent reads by T9 using the same
guery result in adifferent set of rows.

Adaptive Server prevents phantoms by:

* Applying exclusivelocks on rows, pages, or tablesbeing changed. It holds
those locks until the end of the transaction.

* Applying shared locks on rows, pages, or tables being searched. It holds
those locks until the end of the transaction.

» Using range locks or infinity key locks for certain queries on data-only-
locked tables.

Holding the shared locks allows Adaptive Server to maintain the consistency
of theresults at isolation level 3. However, holding the shared lock until the
transaction ends decreases Adaptive Server’s concurrency by preventing other
transactions from getting their exclusive locks on the data.

Compare the phantom, shown in Table 2-10, with the same transaction
executed at isolation level 3, as shown in Table 2-11.

24 Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Table 2-11: Avoiding phantoms in transactions

T11 Event Sequence T12
begi n transaction T11 and T12 start. begi n transaction
select * from T11 queries account
account hol dl ock and holds acquired
wher e acct _nunber < 25 shared locks.
T12 triesto insert row insert into account
but must wait until T11 (acct_nunber, bal ance)

releasesitslocks. val ues (19, 500)
select * from

account hol dl ock

wher e acct_nunber < 25

T11 makes same query
and gets same results.

commit transaction
T11 ends and releases

its shared locks.
commit transaction
T12 getsits exclusive
lock, inserts new row,
and ends.

In transaction T11, Adaptive Server applies shared page locks (if an index
exists on the acct_number argument) or a shared table lock (if no index exists)
and holds the locks until the end of T11. Theinsert in T12 cannot get its
exclusive lock until T11 releasesits shared locks. If T11 isalong transaction,
T12 (and other transactions) may wait for longer periods of time. As aresullt,
you should use level 3 only when required.

Adaptive Server default isolation level

Adaptive Server's default isolation level is 1, which prevents dirty reads.
Adaptive Server enforcesisolation level 1 by:

* Applying exclusive locks on pages or tables being changed. It holds those
locks until the end of the transaction. Only a process at isolation level 0
can read a page locked by an exclusive lock.

e Applying shared locks on pages being searched. It releases those locks
after processing the row, page or table.

Performance and Tuning: Locking 25

Lock types and duration during query processing

Using exclusive and shared locks allows Adaptive Server to maintain the
consistency of the results at isolation level 1. Releasing the shared lock after
the scan moves off a page improves Adaptive Server’s concurrency by
allowing other transactions to get their exclusive locks on the data.

Lock types and duration during query processing

26

The types and the duration of locks acquired during query processing depend
on thetype of command, thelocking scheme of thetable, and theisolation level
at which the command is run.

The lock duration depends on the isolation level and the type of query. Lock
duration can be one of the following:

e Scan duration — Locks are released when the scan moves off the row or
page, for row or page locks, or when the scan of the table completes, for
table locks.

» Statement duration — L ocks are rel eased when the statement execution
compl etes.

» Transaction duration — L ocks are rel eased when the transaction compl etes.

Table 2-12 shows the types of locks acquired by queries at different isolation
levels, for each locking scheme for queriesthat do not use cursors. Table 2-13
shows information for cursor-based queries.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Table 2-12: Lock type and duration without cursors

Data Index Data
Isolation Locking Table Page Page Row
Statement Level Scheme Lock Lock Lock Lock Duration
select 0 allpages - - - - No locks are acquired.
readtext datapages - - - -
any type of datarows - - - -
scan 1 allpages IS S S - * Depends on setting of read
2 with datapages IS * - - committed with lock. See
noholdlock datarows IS - - * “Locking for select queries at
3 with isolation Level 1" on page 29.
noholdlock
2 alpages IS S S - Locks are released at the end
datapages IS S - - of the transaction. See
datarows IS - - S “Isolation Level 2 and
Allpages-Locked tables” on
page 30.
select via 3 allpages IS S S - Locks are released at the end
index scan ~ 1withholdlock datapages IS S - - of the transaction.
2withholdlock datarows IS - - S
select 3 allpages IS S - - Locks are released at the end
via lwithholdlock datapages S - - - of the transaction.
table scan 2withholdlock datarows S - - -
insert 0,123 allpages IX X X - Locks are released at the end
datapages IX X - - of the transaction.
datarows IX - - X
writetext 0,123 alpages IX X - - Locks are held on first text
datapages IX X - - page or row; locks released at
datarows IX - - X the end of the transaction.
delete 0,12 alpages IX U, X U, X - “U” locks are released after
update datapages IX U, X - - the statement compl etes.
any type of datarows IX - - U, X “IX™ and “X” locks are
scan released at the end of the
transaction.
delete 3 allpages IX U, X U, X - “U” locks are released after
update datapages IX U, X - - the statement completes. “1X”
viaindex datarows IX - - U, X and “X” locks are released at
scan the end of the transaction.
delete 3 allpages IX U, X - - Locks are released at the end
update datapages X - - - of the transaction.
viatable datarows X - - -
scan

Key: ISintent shared, IX intent exclusive, Sshared, U update, X exclusive

Performance and Tuning: Locking

27

Lock types and duration during query processing

Table 2-13: Lock type and duration with cursors

Data Index Data
Isolation Locking Table Page Page Row
Statement Level Scheme Lock Lock Lock Lock Duration
select 0 allpages - - - - No locks are acquired.
(without for datapages - - - -
clause) datarows - - - -
select... for 7 allpages IS [S - * Depends on setting of read
read only 2 with datapages IS * - - committed with lock. See
noholdlock datarows IS - - * “Locking for select queries
3with atisolationLevel 1" onpage
noholdlock 29.
2,3 allpages IS S S - L ocks become transactional
1 with holdlock ~ datapages IS S - - after the cursor moves out of
. datarows IS - - S the page/row. Locks are
2 with holdiock released at the end of the
transaction.
select...for 1 allpages IX Ux X - “U” locks are released after
update datapages IX Ux - - the cursor moves out of the
datarows IX - - U, X page/row. “I1X” and “ X"
locks are released at the end
of the transaction.
select...for 1 alpages IX S, X X - “S" locks are released after
update with datapages IX S, X - - the cursor moves out of
shared datarows IX - - S X page/row. “1X” and “ X"
locks are released at the end
of the transaction.
select..for 2,3, 1holdlock allpages IX Ux X - L ocks become transactional
update 2, holdlock datapages IX Ux - - after the cursor moves out of
datarows IX - - U, X thepage/row. Locks are
released at the end of the
transaction.
select...for 2,3 alpages IX S, X X - L ocks become transactional
update with 1 with holdlock ~ datapages IX SX - - after the cursor moves out of
shared datarows IX - - S, X the page/row. Locks are
2 with holdlock released at the end of the
transaction.

Key: ISintent shared, IX intent exclusive, Sshared, U update, X exclusive

28

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Lock types during create index commands

Table 2-14 describes the types of locks applied by Adaptive Server for create
index statements:

Table 2-14: Summary of locks for insert and create index statements

Statement Table Lock Data Page Lock
create clustered index X -
create nonclustered index S -

Key: IX = intent exclusive, S= shared, X = exclusive

Locking for select queries at isolation Level 1

When aselect query on an allpages-locked table performs atable scan at
isolation level 1, it first acquires a shared intent lock on the table and then
acquires a shared lock on the first data page. It locks the next data page, and
dropsthelock onthe first page, so that the locks“walk through” the result set.
As soon as the query completes, the lock on the last data pageis rel eased, and
then the table-level lock isreleased. Similarly, during index scans on an
allpages-locked tabl e, overlapping locks are held asthe scan descendsfrom the
index root page to the data page. Locks are a so held on the outer table of ajoin
while matching rows from inner table are scanned.

select querieson data-only-locked tablesfirst acquire ashared intent tablelock.
L ocking behavior on the data pages and data rows is configurable with the
parameter read committed with lock, as follows:

e If read committed with lock is set to O (the default) then select queries read
the column values with instant-duration page or row locks. The required
column values or pointers for the row are read into memory, and the lock
isreleased. Locks are not held on the outer tables of joinswhile rowsfrom
the inner tables are accessed. This reduces deadlocking and improves
concurrency.

If aselect query needsto read arow that islocked with an incompatible
lock, the query still blocks on that row until the incompatible lock is
released. Setting read committed with lock to O does not affect the isolation
level; only committed rows are returned to the user.

e If read committed with lock is set to 1, select queries acquire shared page
locks on datapages-locked tables and shared row locks on datarows-
locked tables. The lock on thefirst page or row is held, then the lock is
acquired on the second page or row and the lock on the first page or row
is dropped.

Performance and Tuning: Locking 29

Lock types and duration during query processing

Cursors must be declared as read-only to avoid holding locks during scans
when read committed with lock isset to 0. Any implicitly or explicitly up datable
cursor on adata-only-locked table holds locks on the current page or row until
the cursor moves off the row or page. When read committed with lock is set to
1, read-only cursors hold a shared page or row lock on the row at the cursor
position.

read committed with lock does not affect |ocking behavior on allpages-locked
tables. For information on setting the configuration parameter, see in the
System Administration Guide.

Table scans and isolation Levels 2 and 3

This section describes special considerations for locking during table scans at
isolation levels 2 and 3.

Table scans and table locks at isolation Level 3

When a query performs atable scan at isolation level 3 on a data-only-locked
table, ashared or exclusivetablelock provides phantom protection and reduces
the locking overhead of maintaining a large number of row or page locks. On
an allpages-locked table, an isolation level 3 scan first acquires a shared or
exclusive intent table lock and then acquires and holds page-level locks until
the transaction compl etes or until the lock promotion threshold isreached and
atable lock can be granted.

Isolation Level 2 and Allpages-Locked tables

On alpages-locked tables, Adaptive Server supportsisolation level 2
(repeatable reads) by also enforcing isolation level 3 (seriaizable reads). If
transaction level 2 isset in asession, and an allpages-locked table is included
in aquery, isolation level 3will aso be applied on the all pages-locked tables.
Transaction level 2 will be used on all data-only-locked tables in the session.

When update locks are not required

All update and delete commands on an allpages-locked table first acquire an
update lock on the data page and then change to an exclusive lock if the row
meets the qualificationsin the query.

30 Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Updates and delete commands on data-only-locked tables do not first acquire
update locks when:

e Thequery includes search argumentsfor every key in theindex chosen by
the query, so that the index unambiguously qualifies the row, and

e The query does not contain an or clause.

Updates and deletes that meet these requirements immediately acquire an
exclusive lock on the data page or data row. This reduces lock overhead.

Locking during or processing

In some cases, queries using or clauses are processed as a union of more than
one query. Although some rows may match more than one of the or conditions,
each row must be returned only once. Different indexes can be used for each or
clause. If any of the clauses do not have a useful index, the query is performed
using atable scan.

The table's locking scheme and the isolation level affect how or processing is
performed and the types and duration of locks that are held during the query.

Processing or queries for Allpages-Locked tables

If the or query usesthe OR Strategy (different or clauses might match the same
rows), query processing retrieves the row I1Ds and matching key values from
the index and stores them in aworktable, holding shared locks on the index
pages containing the rows. When all row 1Ds have been retrieved, the
worktableis sorted to remove duplicate values. Then, theworktableis scanned,
and the row |Ds are used to retrieve the data rows, acquiring shared locks on
the data pages. The index and data page locks are released at the end of the
statement (for isolation level 1) or at the end of the transaction (for isolation
levels 2 and 3).

If the or query has no possihility of returning duplicate rows, no worktable sort
isneeded. At isolation level 1, locks on the data pages are rel eased as soon as
the scan moves off the page.

Processing or queries for Data-Only-Locked tables

On data-only-locked tables, the type and duration of locks acquired for or
queries using the OR Strategy (when multiple clauses might match the same
rows) depend on the isolation level.

Performance and Tuning: Locking 31

Lock types and duration during query processing

Processing or queries at isolation Levels 1 and 2

No locks are acquired on the index pages or rows of data-only-locked tables
whilerow |Ds are being retrieved from indexes and copied to a worktable.
After the worktable is sorted to remove duplicate values, the datarows are re-
qualified when the row IDs are used to read data from the table. If any rows
were deleted, they are not returned. If any rows were updated, they are re-
qualified by applying the full set of query clauses to them. The locks are
released when the row qualification completes, for isolation level 1, or at the
end of the transaction, for isolation level 2.

Processing or queries at isolation Level 3

Isolation level 3 requires serializable reads. At thisisolation level, or queries
obtain locks on the data pages or data rows during the first phase of or
processing, asthe worktable is being populated. These locks are held until the
transaction completes. Re-qualification of rowsis not required.

Skipping uncommitted inserts during selects

select queries on data only locked tables do not block on uncommitted inserts
when the following conditions are true::

» Thetable uses datarow locking, and
* Theisolationlevel is1or 2.
Under these conditions scans will skip such arow.

The only exception to thisruleisif the transaction doing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the sametransaction. Inthis case, scanswill block onthe uncommitted inserted
row.

Skipping uncommitted inserts during deletes, updates and inserts

32

delete and update queries behave the same way as scans with regard to
uncommitted inserts. When the delete or update encounters an uncommitted
inserted row with the key value of interest, they will skip it without blocking.

The only exception to thisruleisif the transaction doing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the same transaction. In this case, updates and deletes will block on the
uncommitted inserted row.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Using alternative

Insert queries, upon encountering an uncommitted inserted row with the same
key value, will raise aduplicate key error for if the index is unique.

predicates to skip nonqualifying rows

When aselect query includes multiplewhere clauseslinked with and, Adaptive
Server can apply the qualification for any columnsthat have not been affected
by an uncommitted update of arow. If the row does not qualify because of one
of the clauses on an unmodified column, the row does not need to be returned,
so the query does not block.

If the row qualifies when the conditions on the unmodified columns have been
checked, and the conditions described in the next section, Qualifying old and
new valuesfor uncommitted updates does not allow the query to proceed, then
the query blocks until the lock is released.

For example, transaction T15 in Table 2-15 updates balance, while transaction
T16 includes balance in the result set and in a search clause. However, T15
does not update the branch column, so T16 can apply that search argument.

Since the branch value in the row affected by T15 is not 77, the row does not
qualify, and the row is skipped, as shown. If T15 updated a row where branch
equals 77, aselect query would block until T15 either commits or rolls back.

Table 2-15: Pseudo-column-level locking with multiple predicates

T15

Event Sequence T16

begi n transaction

updat e accounts
set bal ance = 80
wher e acct _nunber
and branch = 23

commit transaction

T15 and T16 start. begi n transaction

T15 updates accounts
and holds an exclusive

=20 row lock.
sel ect acct_nunber, bal ance

from accounts
wher e bal ance < 50
and branch = 77
comit tran

T16 queries accounts,
but does not block
because the branch
qualification can be

applied.

For select queries to avoid blocking when they reference columns in addition
to columnsthat are being updated, al of the following conditions must be met:

e Thetable must use datarows or datapages locking.

Performance and Tuning: Locking 33

Pseudo column-level locking

« Atleast one of the search clauses of the select query must be on a column
that among the first 32 columns of the table.

e Theselect query must run at isolation level 1 or 2.

e Theconfiguration parameter read committed with lock must be set to 0, the
default value.

Pseudo column-level locking

During concurrent transactions that involve select queries and update
commands, pseudo column-level locking can allow some queriesto return
values from locked rows, and can allow other queries to avoid blocking on
locked rows that do not qualify. Pseudo column-level locking can reduce
blocking:

* When the select query does not reference columns on which thereis an
uncommitted update.

* When thewhere clause of aselect query references one or more columns
affected by an uncommitted update, but the row does not qualify due to
conditions in other clauses.

* When neither the old nor new value of the updated column qualifies, and
an index containing the updated column is being used.

Select queries that do not reference the updated column

34

A select query on adatarows-locked table can return values without blocking,
even though arow is exclusively locked when:

* Thequery does not reference an updated column in the select list or any
clauses (where, having, group by, order by or compute), and

* Thequery does not use an index that includes the updated column

Transaction T14 in Table 2-16 requests information about a row that islocked
by T13. However, since T14 does not include the updated column in the result
set or as a search argument, T14 does not block on T13's exclusive row lock.

Adaptive Server Enterprise

CHAPTER 2 Locking Overview

Table 2-16: Pseudo-column-level locking with mutually-exclusive

columns
T13 Event Sequence T14
begi n transaction T13 and T14 start. begi n transaction
updat e accounts T13 updates accounts
set balance = 50 and holds an exclusive
wher e acct _nunber = 35 row lock.

commit transaction

sel ect I name, fname, phone

T14 queries the same from accounts
row in accounts. but where acct _nunber = 35

does not access the commit transaction
updated column. T14
does not block.

If T14 uses an index that includes the updated column (for example,
acct_number, balance), the query blocks trying to read the index row.

For select queries to avoid blocking when they do not reference updated
columns, al of the following conditions must be met:

The table must use datarows locking.

The columns referenced in the select query must be among the first 32
columns of the table.

The select query must run at isolation level 1.
The select query must not use an index that contains the updated column.

The configuration parameter read committed with lock must be set to 0, the
default value.

Qualifying old and new values for uncommitted updates

If aselect query includes conditions on a column affected by an uncommitted
update, and the query uses an index on the updated column, the query can
examine both the old and new values for the column:

If neither the old or new value meets the search criteria, the row can be
skipped, and the query does not block.

If either the old or new value, or both of them qualify, the query blocks In
Table 2-17, if the original balance is $80, and the new balance is $90, the
row can be skipped, as shown. If either of the valuesislessthan $50, T18
must wait until T17 completes.

Performance and Tuning: Locking 35

Suggestions to reduce contention

Table 2-17: Checking old and new values for an uncommitted update

T17 Event Sequence T18
begin transaction T17 and T18 start. begin transaction
updat e accounts T17 updates accounts
set bal ance = bal ance + 10 and holds an exclusive
where acct_nunber = 20 row lock; the original
balance was 80, so the
new balanceis 90. sel ect acct _nunber, bal ance

from accounts
wher e bal ance < 50

T18 queries accounts)
commt tran

using an index that
includes balance. It
does not block since
balance does not

conmit transaction qualify

For select queries to avoid blocking when old and new values of uncommitted
updates do not qualify, al of the following conditions must be met:
* Thetable must use datarows or datapages locking.

» Atleast one of the search clauses of the select query must be on a column
that among the first 32 columns of the table.

* Theselect query must run at isolation level 1 or 2.
* Theindex used for the select query must include the updated column.

* Theconfiguration parameter read committed with lock must be set to O, the
default value.

Suggestions to reduce contention

To help reduce lock contention between update and select queries:

» Usedatarows or datapages locking for tables with lock contention due to
updates and selects.

» |f tables have more than 32 columns, make the first 32 columnsthe
columns that are most frequently used as search arguments and in other
guery clauses.

36 Adaptive Server Enterprise

CHAPTER 2 Locking Overview

e Select only needed columns. Avoid using select * when all columnsare not
needed by the application.

e Useany available predicates for select queries. When atable uses
datapages locking, the information about updated columnsis kept for the
entire page, so that if atransaction updates some columnsin one row, and
other columnsin another row on the same page, any select query that
needs to access that page must avoid using any of the updated columns.

Performance and Tuning: Locking 37

Suggestions to reduce contention

38 Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and
Tuning

This chapter discusses the types of locks used in Adaptive Server and the
commandsthat can affect locking. you can find an introduction to L ocking
concepts in the Adaptive Server System Administration Guide.

Topic Page
L ocking and performance 39
Configuring locks and lock promotion thresholds 44
Choosing the locking scheme for atable 53
Optimistic index locking 58

Locking and performance

Locking affects performance of Adaptive Server by limiting concurrency.
Anincrease in the number of simultaneous users of a server may increase
lock contention, which decreases performance. Locks affect performance
when:

Performance and Tuning: Locking

Processes wait for locks to be released —

Any time a process waits for another process to completeits
transaction and release its locks, the overall response time and
throughput is affected.

Transactions result in frequent deadlocks —

A deadlock causes one transaction to be aborted, and the transaction
must be restarted by the application. If deadlocks occur often, it
severely affects the throughput of applications.

Using datapages or datarows locking, or redesigning the way
transactions access the data can help reduce deadlock frequency.

Creating indexes locks tables—

39

Locking and performance

Creating aclustered index locks all users out of the table until theindex is
created;

Creating a nonclustered index locks out all updates until it is created.

Either way, you should create indexes when there is little activity on your
server.

e Turning off delayed deadlock detection causes spinlock contention —

Setting the deadlock checking period to O causes more frequent deadlock
checking. The deadlock detection process holds spinlocks on the lock
structures in memory while it looks for deadlocks.

In ahigh transaction production environment, do not set this parameter to
0 (zero).

Using sp_sysmon and sp_object_stats

Reducing lock co

40

Many of the following sections suggest that you change configuration
parameters to reduce lock contention.

Usesp_object_stats or sp_sysmon to determineif lock contentionisaproblem,
and then use it to determine how tuning to reduce lock contention affects the
system.

See “ldentifying tables where concurrency is a problem” on page 88 for
information on using sp_object_stats.

See“Lock management” on page 73 in Performance and Tuning: Monitoring
and Analyzing for more information about using sp_sysmon to view lock
contention.

If lock contention is a problem, you can use Adaptive Server Monitor to
pinpoint locking problems by checking locks per object.

ntention

Lock contention can impact Adaptive Server's throughput and response time.
You need to consider locking during database design, and monitor locking
during application design.

Solutionsinclude changing thelocking schemefor tableswith high contention,
or redesigning the application or tables that have the highest lock contention.
For example:

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

e Addindexesto reduce contention, especially for deletes and updates.
« Keep transactions short to reduce the time that locks are held.

e Check for “hot spots,” especialy for inserts on allpages-locked heap
tables.

Adding indexes to reduce contention

An update or delete statement that has no useful index on its search arguments
performs atable scan and holds an exclusivetablelock for the entire scan time.
If the data modification task also updates other tables:

e It can be blocked by select queries or other updates.
« It may be blocked and have to wait while holding large numbers of locks.
e It canblock or deadlock with other tasks.

Creating auseful index for the query allowsthe data modification statement to
use page or row locks, improving concurrent access to the table. If creating an
index for alengthy update or del ete transaction isnot possible, you can perform
the operation in acursor, with frequent commit transaction statementsto reduce
the number of page locks.

Keeping transactions short

Any transaction that acquires locks should be kept as short as possible. In
particular, avoid transactions that need to wait for user interaction while
holding locks.

Table 3-1: Examples

With page-level locking With row-level locking
begin tran
sel ect bal ance Intent shared table lock Intent shared table lock
from account hol dl ock Shared page lock Shared row lock

wher e acct _nunber = 25

If theuser goestolunchnow, no If theuser goestolunch now, no
onecanupdaterowsonthepage one can update thisrow.
that holds this row.

Performance and Tuning: Locking 41

Locking and performance

With page-level locking With row-level locking
updat e account Intent exclusive table lock Intent exclusive table lock
set bal ance = bal ance + 50 Update page lock on data page Update row lock on data page
where acct _number = 25 followed by followed by

exclusive page lock on data exclusive row lock on data page

page

No one can read rows on the No one can read this row.
conmit tran page that holds this row.

Avoid network traffic as much as possible within transactions. The network is
slower than Adaptive Server. The example bel ow shows atransaction executed
from isql, sent as two packets.

begin tran isgl batch sent to Adaptive Server
updat e account Locks held waiting for commit
set bal ance = bal ance + 50

where acct_nunber = 25

go

updat e account isgl batch sent to Adaptive Server
set bal ance = bal ance - 50 Locksreleased

where acct _nunber = 45

comit tran

go

Keeping transactions short is especialy crucia for data modifications that
affect nonclustered index keys on allpages-locked tables.

Nonclustered indexes are dense: the level abovethedatalevel containsonerow
for each row in the table. All inserts and deletes to the table, and any updates
to the key value affect at least one nonclustered index page (and adjoining
pages in the page chain, if a page split or page deallocation takes place).

While locking a data page may slow access for asmall nhumber of rows, locks
on frequently-used index pages can block access to a much larger set of rows.

Avoiding hot spots

Hot spots occur when all updates take place on acertain page, asin an allpages-
locked heap table, where all inserts happen on the last page of the page chain.

For example, an unindexed history table that is updated by everyone always
has lock contention on the last page. This sample output from sp_sysmon
shows that 11.9% of the inserts on a heap table need to wait for the lock:

Last Page Locks on Heaps
Grant ed 3.0 0.4 185 88.1 %

42 Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Wi t ed 0.4 0.0 25 11.9 %

Possible solutions are:

Change the lock scheme to datapages or datarows locking.

Since these locking schemes do not have chained data pages, they can
alocate additional pages when blocking occurs for inserts.

Partition the table. Partitioning a heap table creates multiple page chains
in the table, and, therefore, multiple last pages for inserts.

Concurrent inserts to the table are less likely to block one another, since
multiple last pages are available. Partitioning provides away to improve
concurrency for heap tables without creating separate tables for different
groups of users.

See“Improving insert performance with partitions’ on page 101 in
Performance and Tuning: General Information for information about
partitioning tables.

Create a clustered index to distribute the updates across the data pagesin
the table.

Like partitioning, this solution creates multiple insertion points for the
table. However, it a so introduces overhead for maintaining the physical
order of the table’s rows.

Additional locking guidelines

These locking guidelines can help reduce lock contention and speed
performance:

Usethelowest level of locking required by each application. Useisolation
level 2 or 3 only when necessary.

Updates by other transactions may be delayed until a transaction using
isolation level 3 releases any of its shared locks at the end of the
transaction.

Useisolation level 3 only when nonrepeatable reads or phantoms may
interfere with your desired results.

If only afew queriesrequire level 3, use the holdlock keyword or at
isolation serializing clause in those queries instead of using set transaction
isolation level 3 for the entire transaction.

Performance and Tuning: Locking 43

Configuring locks and lock promotion thresholds

If most queriesin the transaction require level 3, use set transaction
isolation level 3, but use noholdlock or at isolation read committed in the
remaining queries that can execute at isolation level 1.

e If you need to perform mass inserts, updates, or deletes on active tables,
you can reduce blocking by performing the operation inside a stored
procedure using a cursor, with frequent commits.

« |If your application needsto return arow, provide for user interaction, and
then update the row, consider using timestamps and the tsequal function
rather than holdlock.

e If you are using third-party software, check the locking model in
applications carefully for concurrency problems.

Also, other tuning efforts can help reduce lock contention. For example, if a
process holds locks on a page, and must perform a physical 1/0 to read an
additional page, it holds the lock much longer than it would have if the
additional page had already been in cache.

Better cache utilization or using large 1/0 can reduce lock contention in this
case. Other tuning efforts that can pay off in reduced lock contention are
improved indexing and good distribution of physical 1/O across disks.

Configuring locks and lock promotion thresholds

44

A System Administrator can configure:
» Thetota number of locks available to processes on Adaptive Server

* Thesizeof thelock hash table and the number of spinlocksthat protect the
page/row lock hashtable, table lock hashtable, and address lock hash table

* The server-wide lock timeout limit, and the lock timeout limit for
distributed transactions

* Lock promotion thresholds, server-wide, for adatabase or for particular
tables

» The number of locks available per engine and the number of locks
transferred between the global freelock list and the engines

See the Adaptive Server System Administration Guide for information on
these parameters.

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Configuring Adaptive Server’s lock limit

By default, Adaptive Server is configured with 5000 locks. System
administrators can use sp_configure to change this limit. For example:

sp_configure "nunber of |ocks", 25000

You may also need to adjust the sp_configure parameter total memory, since
each lock uses memory.

The number of locks required by a query can vary widely, depending on the
locking scheme and on the number of concurrent and parallel processesand the
types of actions performed by the transactions. Configuring the correct number
for your system is a matter of experience and familiarity with the system.

You can start with 20 ocksfor each active concurrent connection, plus 20 locks
for each worker process. Consider increasing the number of locksif:

¢ You change tables to use datarows locking
e Queriesrun at isolation level 2 or 3, or use serializable or holdlock

e You enable parallel query processing, especially for isolation level 2 or 3
queries

e You perform many multirow updates

e Youincrease lock promotion thresholds

Estimating number of locks for data-only-locked tables

Changing to data-only locking may require more locks or may reduce the
number of locks required:

e Tablesusing datapages |ocking require fewer locks than tables using
allpages locking, since queries on datapages-locked tables do not acquire
separate locks on index pages.

e Tablesusing datarows locking can require a large number of locks.
Although no locks are acquired onindex pagesfor datarows-locked tables,
data modification commands that affect many rows may hold more locks.

Queries running at transaction isolation level 2 or 3 can acquire and hold
very large numbers of row locks.

Performance and Tuning: Locking 45

Configuring locks and lock promotion thresholds

Insert commands and locks

select queries and locks

Aninsert with allpages locking requires N+1 locks, where N is the number of
indexes. The same insert on a data-only-locked table locks only the data page
or data row.

Scans at transaction isolation level 1, with read committed with lock set to hold
locks(1), acquire overlapping locksthat roll through the rows or pages, so they
hold, at most, two data page locks at atime.

However, transaction isolation level 2 and 3 scans, especially those using
datarowslocking, can acquire and hold very large numbers of locks, especially
when running in parallel. Using datarows locking, and assuming no blocking
during lock promotion, the maximum number of locks that might be required
for asingletable scaniis:

row | ock pronotion HW * parall el _degree

If lock contention from exclusive locks prevents scans from promoting to a
table lock, the scans can acquire a very large number of locks.

Instead of configuring the number of locks to meet the extremely high locking
demands for queries at isolation level 2 or 3, consider changing applications
that affect large numbers of rowsto usethelock table command. Thiscommand
acquires a table lock without attempting to acquire individual page locks.

See “lock table Command” on page 74 for information on using lock table.

Data modification commands and locks

46

For tablesthat use the datarows locking scheme, data modification commands
can require many more locks than data modification on allpages or datapages-
locked tables.

For example, atransaction that performs alarge number of insertsinto a heap
table may acquire only afew page locks for an all pages-locked table, but
requires one lock for each inserted row in a datarows-locked table. Similarly,
transactions that update or delete large numbers of rows may acquire many
more locks with datarows locking.

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Configuring the lock hashtable (Lock Manager)

Table 3-2: lock hashtable size
Summary Information

Default value 2048

Range of values 12147483647

Status Static

Display Level Comprehensive
Required Role System Administrator

The lock hashtable size parameter specifies the number of hash bucketsin the
lock hash table. This table manages all row, page, and table locks and all lock
requests. Each timeatask acquiresalock, thelock is assigned to ahash bucket,
and each lock reguest for that lock checks the same hash bucket. Setting this
value too low resultsin large numbers of locks in each hash bucket and slows
the searches.

On Adaptive Servers with multiple engines, setting this value too low can also
lead to increased spinlock contention. You should not set the value to lessthan
the default value, 2048. lock hashtable size must be a power of 2. If the value
you specify is not a power of 2, sp_configure rounds the value to the next
highest power of 2 and prints an informational message.

The optimal hash table sizeis a function of the number of distinct objects
(pages, tables, and rows) that will be locked concurrently. The optimal hash
tablesizeisat least 20 percent of the number of distinct objectsthat need to be
locked concurrently. See“Lock management” on page 73 of the Performance
and Tuning: Monitoring and Analyzing for more information on configuring
the lock hash table size.

However, if you have alarge number of users and have had to increase the
number of locks parameter to avoid running out of locks, you should check the
average hash chain length with sp_sysmon at peak periods. If the average
length of the hash chains exceeds 4 or 5, consider increased the value of lock
hashtable size to the next power of 2 from its current setting.

The hash chain length may be high during large insert batches, such as bulk
copy operations. Thisis expected behavior, and does not require that you reset
the lock hash table size.

Performance and Tuning: Locking 47

Configuring locks and lock promotion thresholds

Setting lock promotion thresholds

Lock promotion and

48

The lock promotion thresholds set the number of page or row locks permitted
by atask or worker process before Adaptive Server attemptsto escalate to a
table lock on the object. You can set lock promotion thresholds at the server-
wide level, at the database level, and for individual tables.

The default values provide good performance for awide range of table sizes.
Configuring thethresholds higher reducesthe chance of queriesacquiring table
locks, especially for very large tables where queries lock hundreds of data
pages.

Note Lock promotion is aways two-tiered: from page locks to table locks or
from row locks to table locks. Row locks are never promoted to page locks.

scan sessions
Lock promotion occurs on a per-scan session basis.

A scan session is how Adaptive Server tracks scans of tables within a
transaction. A single transaction can have more than one scan session for the
following reasons:

* A tablemay be scanned more than onceinside a single transaction in the
case of joins, subgueries, exists clauses, and so on.

Each scan of the tableis a scan session.
* A query executed in parallel scansatableusing multipleworker processes.
Each worker process has a scan session.

A table lock is more efficient than multiple page or row locks when an entire
table might eventually be needed. At first, atask acquires page or row locks,
then attemptsto escal ate to atablelock when ascan session acquires more page
or row locks than the value set by the lock promotion threshold.

Since lock escalation occurs on a per-scan session basis, the total number of
page or row locks for a single transaction can exceed the lock promotion
threshold, aslong as no single scan session acquires more than the lock
promotion threshold number of locks. Locks may persist throughout a
transaction, so atransaction that includes multiple scan sessions can
accumulate a large number of locks.

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Lock promotion cannot occur if another task holds locks that conflict with the
typeof tablelock needed. For instance, if atask holdsany exclusive pagelocks,
no other process can promote to atable lock until the exclusive page locks are
released.

When lock promotion is denied due to conflicting locks, a process can
accumulate page or row locks in excess of the lock promotion threshold and
may exhaust all availablelocksin Adaptive Server.

The lock promotion parameters are:

e For allpages-locked tables and datapages-locked tables, page lock
promotion HWM, page lock promotion LWM, and page lock promotion PCT.

* For datarows-locked tables, row lock promotion HWM, row lock promotion
LWM, and row lock promotion PCT.

The abbreviations in these parameters are:
e HWM, high water mark
e LWM, low water mark

e PCT, percent

Lock promotion high water mark

page lock promotion HWM and row lock promotion HWM set a maximum number
of page or row locks allowed on atable before Adaptive Server attempts to
escalate to atable lock. The default value is 200.

When the number of locks acquired during a scan session exceedsthis number,
Adaptive Server attempts to acquire a table lock.

Setting the high water mark to a value greater than 200 reduces the chance of
any task or worker process acquiring atable lock on a particular table. For
example, if aprocess updates more than 200 rows of avery large table during
atransaction, setting the lock promotion high water mark higher keeps this
process from attempting to acquire atable lock.

Setting the high water mark to less than 200 increases the chances of a
particular task or worker process acquiring a table lock.

Performance and Tuning: Locking 49

Configuring locks and lock promotion thresholds

Lock promotion low water mark

page lock promotion LWM and row lock promotion LWM set a minimum number
of locks allowed on atable before Adaptive Server attemptsto acquire atable
lock. The default valueis 200. Adaptive Server never attempts to acquire a

table lock until the number of locks on atable is equal to the low water mark.

Thelow water mark must be lessthan or equal to the corresponding high water
mark.

Setting the low water mark to avery high value decreases the chance for a
particular task or worker processto acquire atablelock, which usesmorelocks
for the duration of the transaction, potentially exhausting all availablelocksin
Adaptive Server. This possibility is especialy high with queries that update a
large number of rows in a datarows-locked table, or select large numbers of
rows from datarows-locked tables at isolation levels 2 or 3.

If conflicting locks prevent lock promotion, you may need to increase the value
of the number of locks configuration parameter.

Lock promotion percent

50

page lock promotion PCT and row lock promotion PCT set the percentage of
locked pages or rows (based on the table size) above which Adaptive Server
attempts to acquire a table lock when the number of locks is between the lock
promotion HWM and the lock promotion LWM.

The default value is 100.

Adaptive Server attempts to promote page locksto atable lock or row locksto
atable lock when the number of locks on the table exceeds:

(PCT * nunber of pages or rows in the table) / 100

Setting lock promotion PCT to avery low value increases the chance of a
particular user transaction acquiring a table lock. Figure 3-1 shows how
Adaptive Server determines whether to promote pagelockson atableto atable
lock.

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Figure 3-1: Lock promotion logic

Does this scan session hold No

Do not promote
lock promotion LWM number 3 b

to table lock.
of page or row locks?
¢Y$
Does this scan session hold Does this scan session hold No
lock promotion HWM number No lock promotion PCT | gy
of page or row or locks? - page or row locks?
Yes Yes

Do not promote
to table lock.

Does any other process hold NO. Promote to
exclusive lock on object? table lock.

Yes

Do not promote
to table lock.

Setting server-wide lock promotion thresholds

Thefollowing command sets the server-wide page lock promotion LWM to 100,
the page lock promotion HWM to 2000, and the page lock promotion PCT to 50
for all datapages-locked and allpages-locked tables:

sp_set pgl ockpronote "server", null, 100, 2000, 50

In this example, the task does not attempt to promote to atable lock unless the
number of locks on the table is between 100 and 2000.

If acommand requires more than 100 but |essthan 2000 locks, Adaptive Server
compares the number of locks to the percentage of locks on the table.

If the number of locksis greater than the number of pages resulting from the
percentage calculation, Adaptive Server attempts to issue a table lock.

sp_setrowlockpromote sets the configuration parameters for all datarows-
locked tables:

Performance and Tuning: Locking 51

Configuring locks and lock promotion thresholds

sp_setrow ockpronote "server", null, 300, 500, 50

Thedefault valuesfor lock promotion configuration parametersarelikely to be
appropriate for most applications.

Setting the lock promotion threshold for a table or database

To configure lock promation values for an individual table or database,
initialize al three lock promotion thresholds. For example:

sp_set pgl ockpronote "table", titles, 100, 2000, 50
sp_setrow ockpronote "table", authors, 300, 500, 50

After the values areinitialized, you can change any individual value. For
example, to change the lock promotion PCT only, use the following command:

sp_set pgl ockpronmote "table", titles, null, null, 70
sp_setrow ockpronote "table", authors, null, null,
50

To configure values for a database, use:

sp_set pgl ockpronot e "dat abase", pubs3, 1000, 1100,
45

sp_setrow ockpronote "dat abase", pubs3, 1000, 1100,
45

Precedence of settings

You can change the lock promotion thresholds for any user database or an
individual table. Settings for an individual table override the database or
server-wide settings; settings for a database override the server-wide values.

Server-wide values for lock promotion apply to all user tables on the server,
unless the database or tables have lock promotion values configured for them.

Dropping database and table settings

To remove table or database lock promotion thresholds, use
sp_dropglockpromote or sp_droprowlockpromote. When you drop a database’s
lock promotion thresholds, tables that do not have lock promotion thresholds
configured use the server-wide values.

When you drop atable’slock promotion thresholds, Adaptive Server usesthe
database’s lock promation thresholds, if they have been configured, or the
server-widevalues, if thelock promotion threshol ds have not been configured.
You cannot drop the server-wide lock promotion thresholds.

52 Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Using sp_sysmon while tuning lock promotion thresholds

Use sp_sysmon to see how many timeslock promotions take place and the
types of promotions they are.

See “Lock promotions’ on page 80 in the Performance and Tuning:
Monitoring and Analyzing for more information.

If thereis aproblem, look for signs of lock contention in the “ Granted” and
“Waited” datainthe “Lock Detail” section of the sp_sysmon output.

See“Lock detail” on page 76 in the Performance and Tuning: Monitoring and
Analyzing for more information.

If lock contentionishigh and lock promotionisfrequent, consider changing the
lock promotion thresholds for the tablesinvolved.

Use Adaptive Server Monitor to see how changes to the lock promotion
threshold affect the system at the object level.

Choosing the locking scheme for a table

In general, choice of lock scheme for anew table should be determined by the
likelihood that applications will experience lock contention on thetable. The
decision about whether to change the locking scheme for an existing table can
be based on contention measurements on the table, but also needsto take
application performance into account.

Here are some typical situations and general guidelines for choosing the
locking scheme:

e Applicationsrequire clustered accessto the datarows dueto range queries
or order by clauses

Allpages locking provides more efficient clustered access than data-only-
locking.

e A large number of applications access about 10 to 20% of the data rows,
with many updates and selects on the same data.

Use datarows or datapages | ocking to reduce contention, especially on the
tables with the highest contention.

e Thetableisaheap table that will have ahigh rate of inserts.

Performance and Tuning: Locking 53

Choosing the locking scheme for a table

Use datarows locking to avoid contention. If the number of rows inserted
per batch is high, datapages locking is also acceptable. Allpages locking
has more contention for the “last page” of heap tables.

Applications need to maintain an extremely high transaction rate;
contentionislikely to be low.

Use allpages locking; lesslocking and latching overhead yields improved
performance.

Analyzing existing applications

If your existing applications experience blocking and deadlock problems,
follow the steps bel ow to analyze the problem:

1

2

Check for deadlocks and lock contention:

» Usesp_object_stats to determine the tables where blocking is a
problem.

« ldentify the table(s) involved in the deadlock, either using
sp_object_stats or by enabling the print deadlock information
configuration parameter.

If the table uses allpages locking and has a clustered index, ensure that
performance of the modified clustered index structure on data-only-locked
tables will not hurt performance.

See “Tables where clustered index performance must remain high” on
page 56.

If the table uses allpages | ocking, convert the locking scheme to datapages
locking to determine whether it solves the concurrency problem.

Re-run your concurrency tests. If concurrency is still an issue, change the
locking scheme to datarows locking.

Choosing alocking scheme based on contention statistics

If the locking scheme for the table is allpages, the lock statistics reported by
sp_object_stats include both data page and index lock contention.

54

If lock contention totals 15% or more for all shared, update, and exclusive
locks, sp_object_stats recommends changing to datapages locking. You should
make the recommended change, and run sp_object_stats again.

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

If contention using datapages locking is more than 15%, sp_object_stats
recommends changing to datarows locking. This two-phase approach is based
on these characteristics:

« Changing from allpages locking to either data-only-locking schemeis
time consuming and expensive, interms of 1/0 cost, but changing between
thetwo data-only-locking schemesisfast and does not require copying the
table.

« Datarows locking requires more locks, and consumes more locking
overhead.

If your applications experience little contention after you convert high-
contending tables to use datapages locking, you do not need to incur the
locking overhead of datarows locking.

Note The number of locks available to all processes on the server is
limited by the number of locks configuration parameter.

Changing to datapages locking reduces the number of locks required,
since index pages are no longer locked.

Changing to datarows locking can increase the number of locks required,
since alock is needed for each row.

See* Estimating number of locksfor data-only-locked tables’ on page 45
for more information.

When examining sp_object_stats output, look at tablesthat are used together in
transactions in your applications. Locking on tables that are used together in
queries and transactions can affect the locking contention of the other tables.

Reducing lock contention on one table could ease lock contention on other
tables aswell, or it could increase lock contention on another table that was
masked by blocking on the first table in the application. For example:

e Lock contention is high for two tables that are updated in transactions
involving several tables. Applications first lock TableA, then attempt to
acquire locks on TableB, and block, holding locks on TableA.

Additional tasks running the same application block while trying to
acquire locks on TableA. Both tables show high contention and high wait
times.

Changing TableB to data-only locking may alleviate the contention on both
tables.

Performance and Tuning: Locking 55

Choosing the locking scheme for a table

e Contention for TableT is high, so itslocking schemeis changed to a data-
only locking scheme.

Re-running sp_object_stats now shows contention on TableX, which had
shown very little lock contention. The contention on TableX was masked
by the blocking problem on TableT.

If your application uses many tables, you may want to convert your set of tables
to data-only locking gradually, by changing just those tables with the highest
lock contention. Then test the results of these changes by rerunning
sp_object_stats.

You should run your usual performance monitoring tests both before and after
you make the changes.

Monitoring and managing tables after conversion

After you have converted one or more tables in an application to a data-only-
locking scheme:

* Check query plans and I/O statistics, especially for those queries that use
clustered indexes.

» Monitor the tables to learn how changing the locking scheme affects:
* Thecluster ratios, especialy for tables with clustered indexes

e The number of forwarded rows in the table

Applications not likely to benefit from data-only locking

This section describes tables and application types that may get little benefit
from converting to data-only locking, or may require additional management
after the conversion.

Tables where clustered index performance must remain high

56

If querieswith high performance requirements use clustered indexes to return
large numbers of rowsinindex order, you may see performance degradation if
you change these tables to use data-only locking. Clustered indexes on data-
only-locked tables are structurally the same as nonclustered indexes.

Placement algorithms keep newly inserted rows close to existing rows with
adjacent values, as long as space is available on nearby pages.

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Performance for a data-only-locked table with a clustered index should be
close to the performance of the same table with allpages |ocking immediately
after acreate clustered index command or areorg rebuild command, but
performance, especialy with large I/O, declinesiif cluster ratios decline
because of inserts and forwarded rows.

Performance remains high for tables that do not experience alot of inserts. On
tablesthat get alot of inserts, a System Administrator may need to drop and re-
create the clustered index or run reorg rebuild more frequently.

Using space management properties such asfillfactor, exp_row_size, and
reservepagegap can help reduce the frequency of maintenance operations. In
some cases, using the allpages locking scheme for the table, even if thereis
some contention, may provide better performance for queries performing
clustered index scans than using data-only locking for the tables.

Tables with maximum-length rows

Data-only-locked tables require more overhead per page and per row than
allpages-locked tables, so the maximum row size for a data-only-locked table
is dlightly shorter than the maximum row size for an allpages-locked table.

For tableswith fixed-length columns only, the maximum row sizeis 1958 bytes
of user datafor data-only-locked tables. Allpages-locked tables allow a
maximum of 1960 bytes.

For tables with variable-length columns, subtract 2 bytes for each variable-
length column (thisincludes all columnsthat allow null values). For example,
the maximum user row size for adata-only-locked table with 4 variable-length
columnsis 1950 bytes.

If you try to convert an allpages-locked table that has more than 1958 bytesin
fixed-length columns, the command fails as soon asiit reads the table schema.

When you try to convert an allpages-locked table with variable-length
columns, and some rows exceed the maximum size for the data-only-locked
table, the alter table command fails at the first row that is too long to convert.

Performance and Tuning: Locking 57

Optimistic index locking

Optimistic index locking

Optimistic index locking can resolve increased contention on some important
resources, such asthe spinlocksthat guard address|ocks on the root page of an
index.

Applications where this amount of contention might occur are typically those
in which:

* Accessto a specified index constitutes a significant portion of the
transaction profile, and many users are concurrently executing the same
workload.

» Different transactions, such as ad hoc and standardized queries, use the
same index concurrently.

Understanding optimistic index locking

Optimistic index locking does not acquire an address lock on the root page of
anindex during normal datamanipulation language operations (DML). If your
updates and inserts can cause modifications to the root page of the accessed
index, optimistic index locking restarts the search and acquires an exclusive
table lock, not an address lock.

Using optimistic index locking

58

You can use this feature when any or all of the following conditions are true:
e Thereissignificant contention on the lock address hash bucket spinlock.
* None of the indexes on this table cause modifications to the root page.

e The number of index levelsis high enough to cause no splitting or
shrinking of the root page.

e Therearelarge numbers of concurrent accesses to read-only tables on
heavily trafficked index pages.

e A databaseisread-only.

Adaptive Server Enterprise

CHAPTER 3 Locking Configuration and Tuning

Cautions and issues

Since an exclusivetablelock blocksall access by other taskstothe entire table,
you should thoroughly understand the user access patterns of your application
before enabling optimistic index locking.

The following circumstances require an exclusive table lock:
e Adding anew level to the root page
e Shrinking the root page

e Splitting or shrinking the immediate child of the root page, causing an
update on the root page

Do not use optimistic index locking when:
e You have small tables with index levels no higher than 3.

e You envision possible modifications to the root page of an index

Note Anexclusivetablelock isan expensive operation, sinceit blocks access
to the entire table. Use extreme caution in setting the optimistic index locking

property.

Two stored procedures are changed by optimistic index locking:

e sp_chgattribute adds an option that acquires an optimistic index lock on a
table.

e sp_help adds a column that displays optimistic index lock.

For more information on these stored procedures, see the Reference Manual.

Performance and Tuning: Locking 59

Optimistic index locking

60 Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

This chapter discusses the types of locks used in Adaptive Server and the
commands that can affect locking.

Specifying the locking scheme for a table

Topic Topic
Specifying the locking scheme for atable 61
Controlling isolation levels 66
Readpast locking 71
Cursors and locking 71
Additiona locking commands 74

The locking schemes in Adaptive Server provide you with the flexibility
to choose the best locking scheme for each table in your application and
to adapt the locking scheme for atable if contention or performance

requires a change. The tools for specifying locking schemes are:

sp_configure, to specify a server-wide default locking scheme

create table to specify the locking scheme for newly created tables

alter table to change the locking scheme for atable to any other

locking scheme

select into to specify the locking scheme for atable created by

selecting results from other tables

Specifying a server-wide locking scheme

Thelock scheme configuration parameter sets the locking scheme to be
used for any new table, if the create table command does not specify the
lock scheme.

To see the current locking scheme, use:

Performance and Tuning: Locking

61

Specifying the locking scheme for a table

sp_configure "l ock schene"

Par anmet er Nane Def aul t Mermory Used Config Val ue Run Val ue

| ock schene al | pages 0 dat arows dat ar ows

The syntax for changing the locking scheme is:

sp_configure "lock scheme", 0,
{allpages | datapages | datarows}

This command sets the default lock scheme for the server to datapages:
sp_configure "lock schene", 0, datapages

When you first install Adaptive Server, lock scheme is set to allpages.

Specifying a locking scheme with create table

You can specify the locking scheme for a new table with the create table
command. The syntax is:

create table table_name (column_name_list)
[lock {datarows | datapages | allpages}]

If you do not specify the lock scheme for a table, the default value for your
server isused, as determined by the setting of the lock scheme configuration
parameter.

This command specifies datarows locking for the new_publishers table:

create tabl e new publishers

(pub_id char (4) not null,
pub_nane varchar(40) null,
city varchar (20) null,
state char (2) nul |)

| ock dat ar ows

Specifying the locking scheme with create table overrides the default server-
wide setting.

See “ Specifying a server-wide locking scheme” on page 61 for more
information.

62 Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

Changing a locking scheme with alter table

Use the alter table command to change the locking scheme for atable. The
syntax is:

alter table table_name
lock {allpages | datapages | datarows}

This command changes the locking scheme for the titles table to datarows
locking:

alter table titles | ock datarows

alter table supports changing from one locking scheme to any other locking
scheme. Changing from allpages|ocking to data-only locking requires copying
the data rows to new pages and re-creating any indexes on the table.

The operation takes several steps and requires sufficient space to make the
copy of the table and indexes. The time required depends on the size of the
table and the number of indexes.

Changing from datapages locking to datarows locking or vice versa does not
require copying data pages and rebuilding indexes. Switching between data-
only locking schemes only updates system tables, and completesin afew
seconds.

Note You cannot use data-only locking for tablesthat have rowsthat are at, or
near, the maximum length of 1962 (including the two bytesfor the offset table).

For data-only-locked tables with only fixed-length columns, the maximum
user datarow size is 1960 bytes (including the 2 bytes for the offset table).

Tableswith variable-length columnsrequire 2 additional bytesfor each column
that is variable-length (this includes columns that alow nulls.)

See Chapter 11, “Determining Sizes of Tables and Indexes,” in the
Performance and Tuning: General Information for information on rows and
row overhead.

Before and after changing locking schemes

Beforeyou changefrom allpageslocking to data-only locking or vice versa, the
following steps are recommended:

Performance and Tuning: Locking 63

Specifying the locking scheme for a table

If thetableispartitioned, and update statistics has not been run since major
data modifications to the table, run update statistics on the table that you
plan to alter. alter table...lock performs better with accurate statistics for
partitioned tables.

Changing the locking scheme does not affect the distribution of data on
partitions; rows in partition 1 are copied to partition 1 in the copy of the
table.

Perform a database dump.

Set any space management properties that should be applied to the copy of
the table or its rebuilt indexes.

See Chapter 9, “ Setting Space Management Properties,” in the
Performance and Tuning: General Information for more information.

Determine if there is enough space.

See“ Determining the space available for maintenance activities’ on page
360 in the Performance and Tuning: General Information.

If any of the tables in the database are partitioned and require a parallel
sort:

e Usesp_dboption to set the database option select into/bulkcopy/plisort
to true and run checkpoint in the database.

e Set your configuration for optimum parallel sort performance.

After alter table completes

64

Run dbcc checktable on the table and dbcc checkalloc on the database to
insure database consistency.

Perform a database dump.

Note After you have changed the locking scheme from allpages locking
to data-only locking or vice versa, you cannot use the dump transaction to
back up the transaction log.

You must first perform afull database dump.

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

Expense of switching to or from allpages locking

Switching from allpages locking to data-only locking or vice versais an
expensive operation, interms of 1/0 cost. The amount of time required depends
on the size of thetable and the number of indexesthat must be re-created. Most
of the cost comes from the 1/0 required to copy the tables and re-create the
indexes. Some logging is also required.

The alter table...lock command performs the following actions when moving
from allpages locking to data-only locking or from data-only locking to
allpages locking:

e Copiesall rowsinthetableto new data pages, formatting rows according
to the new format. If you are changing to data-only locking, any datarows
of lessthan 10 bytes are padded to 10 bytes during this step. If you are
changing to allpages locking from data-only locking, extrapadding is
stripped from rows of less than 10 bytes.

e Dropsand re-creates all indexes on the table.
e Deletestheold set of table pages.
e Updates the system tables to indicate the new locking scheme.

e Updates a counter maintained for the table, to cause the recompilation of
query plans.

If aclustered index exists on the table, rows are copied in clustered index key
order onto the new data pages. If no clustered index exists, the rows are copied
in page-chain order for an allpages-locking to data-only-locking conversion.

The entire alter table...lock command is performed as a single transaction to
ensure recoverability. An exclusive table lock is held on the table for the
duration of the transaction.

Switching from datapages |ocking to datarows locking or vice versa does not
require that you copy pages or re-create indexes. It updates only the system
tables. You are not required to set sp_dboption "select into/bulkcopy/plisort".

Sort performance during alter table

If the table being altered is partitioned, parallel sorting can be used while
rebuilding the indexes. alter table performance can be greatly improved if the
data cache and server are configured for optimal parallel sort performance.

Performance and Tuning: Locking 65

Controlling isolation levels

During alter table, the indexes are re-created one at atime. If your system has
enough engines, data cache, and 1/0 throughput to handle simultaneous create
index operations, you can reduce the overall time required to change locking
schemes by:

« Droping the nonclustered indexes
e Altering the locking scheme
e Configuring for best parallel sort performance

e Re-creating two or more nonclustered indexes at once

Specifying a locking scheme with select into

You can specify alocking schemewhen you create anew table, using the select
into command. The syntax is:

select [all | distinct] select_list
into [[database.]owner.]table_name
lock {datarows | datapages | allpages}
from...

If you do not specify alocking scheme with select into, the new table uses the
server-wide default locking scheme, as defined by the configuration parameter
lock scheme.

This command specifies datarows locking for the table it creates:

select title_id, title, price
into bus_titles

| ock dat ar ows

fromtitles

where type = "busi ness”

Temporary tables created with the #tablename form of naming are single-user
tables, so lock contention is not an issue. For temporary tables that can be
shared among multiple users, that is, tables created with tempdb..tablename,
any locking scheme can be used.

Controlling isolation levels

You can set the transaction isolation level used by select commands:

66 Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

e For all queriesin the session, with the set transaction isolation level
command

e For anindividual query, with the at isolation clause

* For specific tables in a query, with the holdlock, noholdlock, and shared
keywords

When choosing locking levelsin your applications, use the minimum locking
level that is consistent with your business model. The combination of setting
the session level while providing control over locking behavior at the query
level allowsconcurrent transactionsto achievetheresultsthat are required with
the least blocking.

Note If you use transaction isolation level 2 (repeatable reads) on allpages-
locked tables, isolation level 3 (serializing reads) is also enforced.

For more information on isolation levels, see the System Administration Guide.

Setting isolation levels for a session

The SQL standard specifies adefault isolation level of 3. To enforcethislevel,
Transact-SQL provides the set transaction isolation level command. For
example, you can make level 3 the default isolation level for your session as
follows:

set transaction isolation |level 3

If the session has enforced isolation level 3, you can make the query operate at
level 1 using noholdlock, as described below.

If you are using the Adaptive Server default isolation level of 1, or if you have
used the set transaction isolation level command to specify level 0 or 2, you can
enforce level 3 by using the holdlock option to hold shared locks until the end
of atransaction.

The current isolation level for a session can be determined with the global
variable @@isolation.

Syntax for query-level and table-level locking options

The holdlock, noholdlock, and shared options can be specified for each tablein
aselect statement, with the at isolation clause applied to the entire query.

Performance and Tuning: Locking 67

Controlling isolation levels

select select_list
from table_name [holdlock | noholdlock] [shared]
[, table_name [[holdlock | noholdlock] [shared]
{where/group by/order by/compute clauses}
[at isolation {
[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]]

Here is the syntax for the readtext command:

readtext [[database.]Jowner.]table_name.column_name text_pointer
offset size
[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {
[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]}]

Using holdlock, noholdlock, or shared

You can overrideasession’slocking level by applying the holdlock, noholdlock,
and shared options to individual tables in select or readtext commands:

Level to use Keyword Effect

1 noholdlock Do not hold locks until the end of the
transaction; use from level 3 to enforce
level 1

2,3 holdlock Hold shared locks until the transaction
completes; use from level 1 to enforce
level 3

N/A shared Applies shared rather than update locks
for select statementsin cursors open for
update

These keywords affect |ocking for the transaction: if you use holdlock, all locks
are held until the end of the transaction.

If you specify holdlock in aquery whileisolation level 0 isin effect for the
session, Adaptive Server issues awarning and ignores the holdlock clause, not
acquiring locks as the query executes.

If you specify holdlock and read uncommitted, Adaptive Server prints an error
message, and the query is not executed.

68 Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

Using the at isolation clause

You can change the isolation level for al tables in the query by using the at
isolation clause with aselect or readtext command. The optionsin the at
isolation clause are:

Level to use Option Effect
0 read Reads uncommitted changes; use from
uncommitted level 1, 2, or 3 queries to perform dirty
reads (level 0).
1 read committed Reads only committed changes; wait

for locks to be rel eased; use from level
0 to read only committed changes, but
without holding locks.

2 repeatable read Holds shared locks until the transaction
completes; use from level O or level 1
queriesto enforce level 2.

3 serializable Holds shared locks until thetransaction
completes; use from level 1 or level 2
queriesto enforce level 3.

For example, the following statement queriesthetitles table at isolation level O:

sel ect *
fromtitles
at isolation read uncommitted

For more information about the transaction isolation level option and the at
isolation clause, see the Transact-SQL User’s Guide.

Making locks more restrictive

If isolation level 1issufficient for most of your work, but some queriesrequire
higher levels of isolation, you can selectively enforce the higher isolation level
using clauses in the select statement:

* Userepeatable read to enforce level 2
* Useholdlock or at isolation serializable to enforce level 3

The holdlock keyword makes a shared page or table lock more restrictive. It
applies:

e To shared locks

« Tothetable or view for which it is specified

Performance and Tuning: Locking 69

Controlling isolation levels

e For the duration of the statement or transaction containing the statement

Theat isolation clause appliesto all tablesin thefrom clause, and isapplied only
for the duration of the transaction. The locks are rel eased when the transaction
compl etes.

In atransaction, holdlock instructs Adaptive Server to hold shared locks until
the completion of that transaction instead of releasing the lock as soon asthe
required table, view, or data pageis no longer needed. Adaptive Server always
holds exclusive locks until the end of a transaction.

Theuse of holdlock in the following example ensuresthat thetwo queriesreturn
consistent results:

begi n transaction
sel ect branch, sum(bal ance)
from account hol dl ock
group by branch
sel ect sun{bal ance) from account
comit transaction

The first query acquires a shared table lock on account so that no other
transaction can update the data before the second query runs. Thislock is not
released until the transaction including the holdlock command compl etes.

Using read committed

If your session isolation level is 0, and you need to read only committed
changesto the database, you can use the at isolation level read committed clause.

Making locks less restrictive

70

In contrast to holdlock, the noholdlock keyword prevents Adaptive Server from
holding any shared locks acquired during the execution of the query, regardless
of the transaction isolation level currently in effect.

noholdlock is useful in situations where your transactions require a default
isolation level of 2 or 3. If any queriesin those transactions do not need to hold
shared locks until the end of the transaction, you can specify noholdlock with
those queries to improve concurrency.

For example, if your transaction isolation level is set to 3, which would
normally cause aselect query to hold locks until the end of the transaction, this
command releases the locks when the scan moves off the page or row:

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

sel ect bal ance from account nohol dl ock
where acct_nunber < 100

Using read uncommitted

If your sessionisolation level is 1, 2, or 3, and you want to perform dirty reads,
you can use the at isolation level read uncommitted clause.

Using shared

The shared keyword instructs Adaptive Server to use a shared lock (instead of
an update lock) on a specified table or view in a cursor.

See “Using the shared keyword” on page 73 for more information.

Readpast locking

Readpast locking allows select and readtext queriesto silently skip all rowsor
pages locked with incompatible locks. The queries do not block, terminate, or
return error or advisory messages to the user. It islargely designed to be used
in queue-processing applications.

In general, these applicationsallow queriesto return the first unlocked row that
meets query qualifications. An example might be an application tracking calls
for service: the query needs to find the row with the earliest timestamp that is
not locked by another repair representative.

For more information on readpast locking, seethe Transact-SQL User’s Guide.

Cursors and locking

Cursor locking methods are similar to the other locking methods in Adaptive
Server. For cursors declared as read only or declared without the for update
clause, Adaptive Server uses a shared page lock on the data page that includes
the current cursor position.

Performance and Tuning: Locking 71

Cursors and locking

72

When additional rows for the cursor are fetched, Adaptive Server acquires a
lock on the next page, the cursor position is moved to that page, and the
previous page lock is released (unless you are operating at isolation level 3).

For cursors declared with for update, Adaptive Server uses update page locks
by default when scanning tables or views referenced with the for update clause
of the cursor.

If thefor update list is empty, all tables and views referenced in the from clause
of the select statement receive update locks. An update lock is a specia type of
read lock that indicates that the reader may modify the data soon. An update
lock allows other shared locks on the page, but does not allow other update or
exclusive locks.

If arow isupdated or deleted through a cursor, the data modification
transaction acquires an exclusive lock. Any exclusive locks acquired by
updates through a cursor in a transaction are held until the end of that
transaction and are not affected by closing the cursor.

Thisis also true of shared or update locks for cursors that use the holdlock
keyword or isolation level 3.

The following describes the locking behavior for cursors at each isolation
level:

e Atleve 0, Adaptive Server uses no locks on any base table page that
contains arow representing a current cursor position. Cursors acquire no
read locks for their scans, so they do not block other applications from
accessing the same data.

However, cursors operating at thisisolation level are not updatable, and
they require a unique index on the base table to ensure accuracy.

e Atleve 1, Adaptive Server uses shared or update locks on base table or
leaf-level index pages that contain arow representing a current cursor
position.

The page remains locked until the current cursor position moves off the
page as aresult of fetch statements.

e Atlevel 2or 3, Adaptive Server uses shared or update locks on any base
tableor leaf-level index pagesthat have been read in atransaction through
the cursor.

Adaptive Server holds the locks until the transaction ends; it does not
release the locks when the data page is no longer needed or when the
cursor is closed.

Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

If you do not set the close on endtran or chained options, acursor remains open
past the end of the transaction, and its current page locks remain in effect. It
may also continue to acquire locks as it fetches additional rows.

Using the shared keyword

When declaring an updatable cursor using the for update clause, you can tell
Adaptive Server to use shared page locks (instead of update page locks) in the
declare cursor statement:
declare cursor_name cursor
for select select_list

from {table_name | view_name} shared
for update [of column_name_list]

This allows other users to obtain an update lock on the table or an underlying
table of the view.

You can use the holdlock keyword in conjunction with shared after each table
or view name. holdlock must precede shared in the select statement. For
example:

decl are authors_crsr cursor

for select au_id, au_l nane, au_fnanme
from aut hors hol dl ock shared
where state !="'CA
for update of au_l name, au_fnane

These are the effects of specifying the holdlock or shared optionswhen defining
an updatable cursor:

e If you do not specify either option, the cursor holds an update lock on the
row or on the page containing the current row.

Other users cannot update, through a cursor or otherwise, the row at the
cursor position (for datarows-locked tables) or any row on this page (for
allpages and datapages-locked tables).

Other users can declare acursor on the same tablesyou usefor your cursor,
and can read data, but they cannot get an update or exclusive lock on your
current row or page.

e If you specify the shared option, the cursor holds a shared lock on the
current row or on the page containing the currently fetched row.

Performance and Tuning: Locking 73

Additional locking commands

Other users cannot update, through a cursor or otherwise, the current row,
or the rows on this page. They can, however, read the row or rows on the

page.

» |If you specify the holdlock option, you hold update locks on all the rows or
pages that have been fetched (if transactions are not being used) or only
the pages fetched since the last commit or rollback (if in a transaction).

Other users cannot update, through acursor or otherwise, currently fetched
rows or pages.

Other userscan declare acursor on the same tablesyou usefor your cursor,
but they cannot get an update lock on currently fetched rows or pages.

» If you specify both options, the cursor holds shared locks on all the rows
or pagesfetched (if not using transactions) or on the rows or pagesfetched
since the last commit or rollback.

Other users cannot update, through acursor or otherwise, currently fetched
roWs or pages.

Additional locking commands

lock table Command
In transactions, you can explicitly lock atable with the lock table command.

* Toimmediately lock the entire table, rather than waiting for lock
promotion to take effect.

* Whenthe query or transactions uses multiple scans, and none of the scans
locks a sufficient number of pages or rows to trigger lock promotion, but
the total number of locksis very large.

» When large tables, especialy those using datarows locking, need to be
accessed at transaction level 2 or 3, and lock promotion islikely to be
blocked by other tasks. Using lock table can prevent running out of locks.

The table locks are released at the end of the transaction.

lock table allowsyou to specify await period. If thetablelock cannot be granted
within the wait period, an error message is printed, but the transaction is not
rolled back.

74 Adaptive Server Enterprise

CHAPTER 4 Using Locking Commands

Lock timeouts

See lock table in the Adaptive Server Reference Manual for an example of a
stored procedure that uses|ock time-outs, and checksfor an error message. The
procedure continues to execute if it was run by the System Administrator, and
returns an error message to other users.

You can specify the time that atask waits for alock:

e Attheserver level, with the lock wait period configuration parameter

e Forasession or in astored procedure, with the set lock wait command

e For alock table command

Seethe Transact-SQL Users' Guide for moreinformation on these commands.

Except for lock table, atask that attemptsto acquire alock and failsto acquire
it within the time period returns an error message and the transaction is rolled
back.

Using lock time-outs can be useful for removing tasksthat acquire some locks,
and then wait for long periods of time blocking other users. However, since
transactions are rolled back, and users may simply resubmit their queries,
timing out a transaction means that the work needs to be repeated.

You can use sp_sysmon to monitor the number of tasks that exceed the time
limit while waiting for alock.

See “Lock time-out information” on page 81 in the Performance and Tuning:
Monitoring and Analyzing.

Performance and Tuning: Locking 75

Additional locking commands

76 Adaptive Server Enterprise

CHAPTER 5

Locking tools

Locking Reports

This chapter discusses the tools that report on locks and locking behavior.

Topic Page
Locking tools 77
Deadlocks and concurrency 81
I dentifying tables where concurrency is a problem 88
Lock management reporting 89

sp_who, sp_lock, and sp_familylock report on locks held by users, and show
processes that are blocked by other transactions.

Getting information about blocked processes

sp_who reportson system processes. If auser’scommand is being blocked
by locks held by another task or worker process, the status column shows
“lock sleep” to indicate that this task or worker processis waiting for an
existing lock to be released.

The blk_spid or block_xloid column shows the process ID of the task or
transaction holding the lock or locks.

You can add a user name parameter to get sp_who information about a
particular Adaptive Server user. If you do not provide auser name, sp_who
reports on all processesin Adaptive Server.

Note The sample output for sp_lock and sp_familylock in this chapter
omits the class column to increase readability. The class column reports
either the names of cursorsthat hold locks or “Non Cursor Lock.”

Performance and Tuning: Locking 77

Locking tools

Viewing locks
To get areport on the locks currently being held on Adaptive Server, use

sp_lock:
sp_l ock
fid spid loid | ocktype table_id page row dbnane cont ext
0 15 30 Ex_intent 208003772 0 O sales Fam dur
0 15 30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
0 15 30 Ex_page 208003772 2404 O sales Fam dur, Ind pg
0 15 30 Ex_page-bl k 208003772 946 0 sales Fam dur
0 30 60 Ex_intent 208003772 0 0 sales Fam dur
0 30 60 Ex_page 208003772 997 0 sales Fam dur
0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg
0 35 70 Sh_intent 16003088 0 0 sales Fam dur
0 35 70 Sh_page 16003088 1096 0 sales Fam dur, Inf key
0 35 70 Sh_page 16003088 3102 0 sales Fam dur, Range
0 35 70 Sh_page 16003088 3113 0 sales Fam dur, Range
0 35 70 Sh_page 16003088 3365 0 sales Fam dur, Range
0 35 70 Sh_page 16003088 3604 0 sales Fam dur, Range
0 49 98 Sh_intent 464004684 0 0 naster Fam dur
0 50 100 Ex_intent 176003658 0 0 stock Fam dur
0 50 100 Ex_row 176003658 36773 8 stock Fam dur
0 50 100 Ex_intent 208003772 0 0 stock Fam dur
0 50 100 Ex_row 208003772 70483 1 stock Fam dur
0 50 100 Ex_row 208003772 70483 2 stock Fam dur
0 50 100 Ex_row 208003772 70483 3 stock Fam dur
0 50 100 Ex_row 208003772 70483 5 stock Fam dur
0 50 100 Ex_row 208003772 70483 8 stock Fam dur
0 50 100 Ex_row 208003772 70483 9 stock Fam dur
32 13 64 Sh_page 240003886 17264 0 stock
32 16 64 Sh_page 240003886 4376 0 stock
32 17 64 Sh_page 240003886 7207 0 stock
32 18 64 Sh_page 240003886 12766 0 stock
32 18 64 Sh_page 240003886 12767 0 stock
32 18 64 Sh_page 240003886 12808 0 stock
32 19 64 Sh_page 240003886 22367 0 stock
32 32 64 Sh_intent 16003088 0 O stock Fam dur
32 32 64 Sh_intent 48003202 0 O stock Fam dur
32 32 64 Sh_intent 80003316 0 0 stock Fam dur
32 32 64 Sh_intent 112003430 0 0 stock Fam dur
32 32 64 Sh_intent 176003658 0 0 stock Fam dur
32 32 64 Sh_intent 208003772 0 0 stock Fam dur
32 32 64 Sh_intent 240003886 0 O stock Fam dur

78 Adaptive Server Enterprise

CHAPTER 5 Locking Reports

This example shows the lock status of serial processes and two parallel
processes:

e spid 15 hold an exclusive intent lock on atable, one data page lock, and
twoindex pagelocks. A “blk” suffix indicates that this processishblocking
another process that needs to acquire alock; spid 15 is blocking another
process. As soon as the blocking process compl etes, the other processes
move forward.

e spid 30 holds an exclusive intent lock on atable, one lock on a data page,
and two locks on index pages.

« spid 35isperforming arangequery atisolationlevel 3. It holdsrangelocks
on several pages and an infinity key lock.

* spid 49 isthetask that ran sp_lock; it holds a shared intent lock on the
spt_values table in master whileit runs.

* spid 50 holds intent locks on two tables, and several row locks.

« fid 32 showsseveral spids holding locks: the parent process (spid 32) holds
shared intent locks on 7 tables, while the worker processes hold shared
page locks on one of the tables.

Thelock type column indicates not only whether thelock isashared lock (“ Sh”
prefix), an exclusive lock (“Ex” prefix), or an “Update” lock, but also whether
itisheld on atable (“table’ or “intent”) or on a*“page” or “row.”

A “demand” suffix indicates that the process will acquire an exclusive lock as
soon as all current shared locks are rel eased.

See the System Administration Guide for more information on demand locks.
The context column consists of one or more of the following values:

e “Famdur” meansthat thetask will hold thelock until the query completes,
that is, for the duration of the family of worker processes. Shared intent
locks are an example of Fam dur locks.

For aparallel query, the coordinating process always acquires a shared
intent table lock that is held for the duration of the parallel query. If the
paralel query is part of atransaction, and earlier statementsin the
transaction performed data modifications, the coordinating process holds
family duration locks on all of the changed data pages.

Worker processes can hold family duration locks when the query operates
at isolation level 3.

« “Ind pg” indicates locks on index pages (allpages-locked tables only).

Performance and Tuning: Locking 79

Locking tools

fid spid loid | ocktype

0
0
0
0

fid spid loid | ocktype

0

[eNeoNeoNoNoNoNo]

30
30
30
30

15
15
15
15
30
30
30
30

e “Inf key” indicates an infinity key lock, used on data-only-locked tables
for some range queries at transaction isolation level 3.

e “Range’ indicatesarangelock, used for somerange queries at transaction
isolation level 3.

To see lock information about a particular login, give the spid for the process:

sp_l ock 30
table_id page row dbnane cont ext
60 Ex_intent 208003772 0 O sales Fam dur
60 Ex_page 208003772 997 0 sales Fam dur
60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg

If the spid you specify is also thefid for afamily of processes, sp_who prints
information for all of the processes.

You can also request information about locks on two spids:

sp_lock 30, 15

table_id page row dbnane cont ext
30 Ex_intent 208003772 0 0 sales Fam dur
30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
30 Ex_page 208003772 2404 0 sales Fam dur, Ind pg
30 Ex_page- bl k 208003772 946 0 sales Fam dur
60 Ex_intent 208003772 0 O sales Fam dur
60 Ex_page 208003772 997 0 sales Fam dur
60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg

Viewing locks

sp_familylock displaysthelocks held by afamily. This examples showsthat the
coordinating process (fid 51, spid 51) holds a shared intent lock on each of four
tables and a worker process holds a shared page lock:

sp_fam |yl ock 51

fid spid

| oid | ocktype

102 Sh_page
102 Sh_intent

51 23
51 51

80

table_id

208003772
16003088

page

945
0

row dbnane

0
0

sal es
sal es

cont ext

Fam dur

Adaptive Server Enterprise

CHAPTER 5 Locking Reports

51 51 102 Sh_intent 48003202 0 0 sales Fam dur
51 51 102 Sh_intent 176003658 0 0 sales Fam dur
51 51 102 Sh_intent 208003772 0 O sales Fam dur

You can also specify two IDs for sp_familylock.

Intrafamily blocking during network buffer merges

fid spid status

11 11 sl eeping

11 16 | ock sl eep
11 17 |l ock sl eep
11 18 send sl eep
11 19 |l ock sl eep
11 20 |l ock sleep
11 21 lock sleep

When many worker processes are returning query results, you may see
blocking between worker processes. This example shows five worker
processes blocking on the sixth worker process:

sp_who 11

| ogi nane ori gname hostnane bl k dbnare cnd

di ana di ana olympus O sal es SELECT

di ana di ana olympus 18 sales WRKER PROCESS
di ana di ana olympus 18 sales WORKER PROCESS
di ana di ana olynmpus 0 sal es WORKER PROCESS
di ana di ana olympus 18 sales WORKER PROCESS
di ana di ana olympus 18 sales WORKER PROCESS
di ana di ana olympus 18 sales WORKER PROCESS

Each worker process acquires an exclusive address lock on the network buffer
whilewriting resultstoit. When the buffer isfull, it is sent to the client, and the
lock is held until the network write completes.

Deadlocks and concurrency

Simply stated, adeadlock occurswhen two user processes each have alock on
a separate data page, index page, or table and each wants to acquire alock on
same page or table locked by the other process. When this happens, the first
process is waiting for the second release the lock, but the second process will
not release it until the lock on the first process’s object is released.

Performance and Tuning: Locking 81

Deadlocks and concurrency

Server-side versus application-side deadlocks

When tasks deadlock in Adaptive Server, a deadlock detection mechanism
rolls back one of the transactions, and sends messages to the user and to the
Adaptive Server error log. It is possible to induce application-side deadlock
situationsin which a client opens multiple connections, and these client
connections wait for locks held by the other connection of the same
application.

These are not true server-side deadlocks and cannot be detected by Adaptive
Server deadlock detection mechanisms.

Application deadlock example

Some devel opers simulate cursors by using two or more connections from DB-
Library™. One connection performs a select and the other connection
performs updates or deletes on the same tables. This can create application
deadlocks. For example:

* Connection A holds a shared lock on a page. Aslong asthere are rows
pending from Adaptive Server, a shared lock is kept on the current page.

» Connection B requestsan exclusivelock on the same pages and then waits.

* Theapplication waits for Connection B to succeed before invoking the
logic needed to remove the shared lock. But this never happens.

Since Connection A never requests alock that is held by Connection B, thisis
not a server-side deadl ock.

Server task deadlocks

Below is an example of adeadlock between two processes.

82 Adaptive Server Enterprise

CHAPTER 5 Locking Reports

T19

Event sequence

T20

begi n transaction
updat e savi ngs

set bal ance = bal ance -
wher e acct _nunber = 25

updat e checking

set bal ance = bal ance + 250

wher e acct _nunber = 45

commit transaction

T19 and T20 start.

T19 getsexclusivelock
on savings while T20
getsexclusive lock on
checking.

T19 waitsfor T20to
releaseits lock while
T20 waitsfor T19 to
release itslock;
deadlock occurs.

begi n transaction

updat e checki ng
set bal ance = bal ance - 75
where acct _nunmber = 45

updat e savi ngs
set bal ance = bal ance + 75
where acct _nunmber = 25

comit transaction

If transactions T19 and T20 execute simultaneously, and both transactions
acquire exclusive locks with their initial update statements, they deadlock,
waiting for each other to release their locks, which will not happen.

Adaptive Server checks for deadlocks and chooses the user whose transaction
has accumulated the least amount of CPU time as the victim.

Adaptive Server rolls back that user’s transaction, notifies the application
program of thisaction with message number 1205, and allowsthe other process
to move forward.

The example above shows two data modification statements that deadlock;
deadl ocks can also occur between a process holding and needing shared locks,
and one holding and needing exclusive locks.

In amultiuser situation, each application program should check every
transaction that modifies data for message 1205 if thereis any chance of
deadlocking. It indicates that the user transaction was selected as the victim of
adeadlock and rolled back. The application program must restart that

transaction.

Performance and Tuning: Locking

83

Deadlocks and concurrency

Deadlocks and parallel queries

84

Worker processes can acquire only shared locks, but they can still be involved
in deadlocks with processes that acquire exclusive locks. The locks they hold
meet one or more of these conditions:

e A coordinating process holds a table lock as part of a parallel query.

The coordinating process could hold exclusivelockson other tablesas part
of aprevious query in atransaction.

e A parald query isrunning at transaction isolation level 3 or using holdlock
and holds locks.

e A paralée query isjoining two or more tables while another processis
performing a sequence of updates to the same tables within atransaction.

A single worker process can be involved in adeadlock such as those between
two serial processes. For example, aworker process that is performing ajoin

between two tables can deadl ock with aserial processthat isupdating the same
two tables.

In some cases, deadl ocks between serial processes and familiesinvolvealevel
of indirection.

For example, if atask holds an exclusive lock on tableA and needs alock on
tableB, but a worker process holds a family-duration lock on tableB, the task
must wait until the transaction that the worker processisinvolvedin completes.

If another worker process in the same family needs alock on tableA, the result
isadeadlock. Figure 5-1 illustrates the following deadlock scenario:

e Thefamily identified by fid 8 isdoing aparallel query that involvesajoin
of stock_tbl and sales_tbl, at transaction level 3.

e Theserial task identified by spid 17 (T17) isperforming insertsto stock_tbl
and sales_tbl in atransaction.

These are the steps that lead to the deadl ock:

W89, aworker process with afid of 8 and aspid of 9, holds a shared lock
on page 10862 of stock_thl.

e T17 holds an exclusive lock on page 634 of sales_tbl. T17 needs an
exclusivelock on page 10862, which it cannot acquire until W8 9 rel eases
its shared lock.

e Theworker process W8 10 needs a shared lock on page 634, which it
cannot acquire until T17 releases its exclusive lock.

Adaptive Server Enterprise

CHAPTER 5 Locking Reports

Figure 5-1: A deadlock involving a family of worker processes

stock_tbl Shared
page
lock
R 4 Page 10862
.. Worker
(level 3) process
sales_tbl Worker
E;(;Lusive I process
lock Page 634 («k ° Shared
intent
lock

Legend: — Lock held by
- - - - I Needs lock

Printing deadlock information to the error log

Server-side deadl ocks are detected and reported to the application by Adaptive
Server and in the server’s error log. The error message sent to the application
is error 1205.

The message sent to the error log, by default, merely identifies that a deadl ock
occurred. The numbering in the message indicates the number of deadlocks
since the last boot of the server.

03: 00000: 00029: 1999/ 03/ 15 13:16:38.19 server Deadlock |Id 11 detected

In this output, fid 0, spid 29 started the deadlock detection check, so itsfid and
spid values are used as the second and third values in the deadlock message.
(Thefirst value, 03, is the engine number.)

To get more information about the tasks that deadlock, set the print deadlock
information configuration parameter to 1. This setting sends more detailed
deadl ock messages to the log and to the terminal session where the server
started.

However, setting print deadlock information to 1 can degrade Adaptive Server
performance. For this reason, you should use it only when you are trying to
determine the cause of deadlocks.

Performance and Tuning: Locking 85

Deadlocks and concurrency

The deadlock messages contain detailed information, including:
e Thefamily and server-process I Ds of the tasksinvolved

e Thecommandsandtablesinvolvedin deadlocks; if astored procedurewas
involved, the procedure name is shown

« Thetypeof locks each task held, and the type of lock each task wastrying
to acquire

e Theserver login IDs (suid values)

In the following report, spid 29 is deadlocked with a parallel task, fid 94, spid
38. Thedeadlock involves exclusive versus shared lock requests on the authors
table. spid 29 is chosen as the deadlock victim:

Deadl ock Id 11: detected. 1 deadl ock chain(s) involved.

Deadl ock Id 11: Process (Famlyid 94, 38) (suid 62) was executing a SELECT
comand at |ine 1.
Deadl ock 1d 11: Process (Fanmilyid 29, 29) (suid 56) was executing a | NSERT
comand at |ine 1.
SQ Text: insert authors (au_id, au_fnane, au_l nane) val ues (' A999999816’,
"Bill', 'Dewart’)

Deadl ock 1d 11: Process (Familyid 0, Spid 29) was waiting for a’exclusive page’
| ock on page 1155 of the 'authors’ table in database 8 but process (Fanilyid
94, Spid 38) already held a 'shared page’ lock on it.

Deadl ock I1d 11: Process (Famlyid 94, Spid 38) was waiting for a 'shared page’
| ock on page 2336 of the "authors’ table in database 8 but process (Famlyid
29, Spid 29) already held a 'exclusive page’ lock on it.

Deadl ock Id 11: Process (Famlyid 0, 29) was chosen as the victim End of
deadl ock information.

Avoiding deadlocks

It is possible to encounter deadl ocks when many long-running transactionsare
executed at the same time in the same database. Deadl ocks become more
common as the lock contention increases between those transactions, which
decreases concurrency.

Methods for reducing lock contention, such as changing the locking scheme,
avoiding tablelocks, and not holding shared locks, are described in Chapter 3,
“Locking Configuration and Tuning.”

86 Adaptive Server Enterprise

CHAPTER 5 Locking Reports

Acquire locks on objects in the same order

Well-designed applications can minimize deadl ocks by always acquiring locks
inthe sameorder. Updatesto multipletables should awaysbe performedin the
same order.

For example, the transactions described in Figure 5-1 could have avoided their
deadlock by updating either the savings or checking table first in both
transactions. That way, one transaction gets the exclusive lock first and
proceeds while the other transaction waits to receiveits exclusive lock on the
same table when the first transaction ends.

In applications with large numbers of tables and transactions that update
several tables, establish alocking order that can be shared by al application
developers.

Delaying deadlock checking

Adaptive Server performs deadlock checking after a minimum period of time
for any process waiting for alock to be released (deeping). This deadlock
checking is time-consuming overhead for applications that wait without a
deadlock.

If your applications deadl ock infrequently, Adaptive Server can delay deadlock
checking and reduce the overhead cost. You can specify the minimum amount
of time (in milliseconds) that a process waits before it initiates a deadlock
check using the configuration parameter deadlock checking period.

Valid values are 0—-2147483. The default valueis500. deadlock checking period
is adynamic configuration value, so any change to it takes immediate effect.

If you set the value to 0, Adaptive Server initiates deadlock checking when the
process begins to wait for alock. If you set the value to 600, Adaptive Server
initiates a deadlock check for the waiting process after at least 600 ms. For
example:

sp_configure "deadl ock checking period", 600

Setting deadlock checking period to a higher val ue produces longer delays
before deadlocks are detected. However, since Adaptive Server grants most
lock requests before this time elapses, the deadlock checking overhead is
avoided for those lock requests.

Adaptive Server performs deadlock checking for all processes at fixed
intervals, determined by deadlock checking period. If Adaptive Server performs
adeadlock check while a process’'s deadlock checking is delayed, the process
waits until the next interval.

Performance and Tuning: Locking 87

Identifying tables where concurrency is a problem

Therefore, aprocess may wait from the number of milliseconds set by deadlock
checking period to almost twice that value before deadlock checking is
performed. sp_sysmon can help you tune deadlock checking behavior.

See “Deadlock detection” on page 79 in the Performance and Tuning:
Monitoring and Analyzing.

Identifying tables where concurrency is a problem

88

sp_object_stats prints table-level information about lock contention. You can
useit to:

* Report on al tables that have the highest contention level
* Report contention on tables in asingle database

* Report contention on individual tables

The syntax is:

sp_object_stats interval [, top_n [, dbname [, objname [, rpt_option

m

To measure lock contention on all tablesin all databases, specify only the
interval. This example monitors lock contention for 20 minutes, and reports
statistics on the ten tables with the highest levels of contention:

sp_obj ect _stats "00:20: 00"
Additional arguments to sp_object_stats are as follows:

» top_n-—alowsyou to specify the number of tablesto be included in the
report. Remember, the default is 10. To report on the top 20 high-
contention tables, for example, use:

sp_obj ect _stats "00:20: 00", 20
» dbname — prints statistics for the specified database.
* objname — measures contention for the specified table.
* rpt_option — specifies the report type:

* rpt_locks reportsgrants, waits, deadlocks, and wait timesfor thetables
with the highest contention. rpt_locks is the default.

* rpt_obijlist reports only the names of the objects with the highest level
of lock activity.

Adaptive Server Enterprise

CHAPTER 5 Locking Reports

Cbj ect Nane: pubtune..titles (dbid=7,

Page Locks

Wi ts:

Deadl ocks:
VWai t-tine:
Cont enti on:

*** Consi der

Here is sample output for titles, which uses datapages locking:

20603764 s
0. 56%

UP_PAGE EX_PAGE
4052 4828
500 776
0 24
14265708 ns 2831556 s
10. 98% 13. 79%

altering pubtune..titles to Datarows | ocking.

Table 5-1 shows the meaning of the values.

Table 5-1: sp_object_stats output

obj i d=208003772, | ockschene=Dat apages)

Output dow Value

Grants The number of times the lock was granted immediately.

Waits The number of times the task needing alock had to wait.

Deadlocks The number of deadlocks that occurred.

Wait-times The total number of milliseconds that all tasks spent
waiting for alock.

Contention The percentage of times that atask had to wait or

encountered a deadlock.

sp_object_stats recommends changing the locking scheme when total
contention on atable is more than 15 percent, as follows:

« If thetable uses allpages locking, it recommends changing to datapages

locking.

e I thetable uses datapages locking, it recommends changing to datarows

locking.

Lock management reporting

Output from sp_sysmon gives statistics on locking and deadlocks discussed in

this chapter.

Use the statistics to determine whether the Adaptive Server system is
experiencing performance problems due to lock contention.

Performance and Tuning: Locking

89

Lock management reporting

For more information about sp_sysmon and lock statistics, see “Lock
management” on page 73 in the Performance and Tuning: Monitoring and
Analyzing.

Use Adaptive Server Monitor to pinpoint locking problems.

90 Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

This chapter introduces the basic query analysistools that can help you
choose appropriate indexes and discussesindex selection criteriafor point
queries, range queries, and joins.

Topic Page
How indexes affect performance 91
Symptoms of poor indexing 92
Detecting indexing problems 92
Fixing corrupted indexes 95
Index limits and requirements 98
Choosing indexes 98
Techniques for choosing indexes 109
Index and statistics maintenance 112
Additional indexing tips 113

How indexes affect performance

Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and del ete operations can take
longer when alarge number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The Adaptive Server query optimizer uses a probabilistic costing model.
It analyzesthe costs of possible query plans and chooses the plan that has
the lowest estimated cost. Since much of the cost of executing a query
consists of disk /O, creating the correct indexes for your applications
means that the optimizer can use indexes to:

« Avoid table scans when accessing data

Performance and Tuning: Locking 91

Detecting indexing problems

e Target specific data pages that contain specific valuesin apoint query
« Establish upper and lower bounds for reading datain a range query
e Avoid data page access completely, when an index covers a query

e Useordered data to avoid sorts or to favor merge joins over nested-
loop joins

In addition, you can create indexes to enforce the uniqueness of data and
to randomize the storage location of inserts.

Detecting indexing problems

Some of the major indicationsof insufficient or incorrect indexing include:
* A select statement takes too long.
* A join between two or more tables takes an extremely long time.

» Select operations perform well, but data modification processes
perform poorly.

» Point queries (for example, “where colvalue = 3") perform well, but
range queries (for example, “where colvalue > 3 and colvalue < 30")
perform poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing

92

A primary goal of improving performance with indexesis avoiding table
scans. In atable scan, every page of the table must be read from disk.

A query searching for a unique value in atable that has 600 data pages
requires 600 physical and logical reads. If anindex pointsto the datavalue,
the same query can be satisfied with 2 or 3 reads, a performance
improvement of 200 to 300 percent.

On asystem with a 12-ms. disk, thisis a difference of several seconds
compared to less than a second. Heavy disk 1/O by asingle query hasa
negative impact on overall throughput.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

Lack of indexes is causing table scans

If select operations and joinstaketoo long, it probably indicatesthat either
an appropriateindex doesnot exist or, it exists, but isnot being used by the
optimizer.

showplan output reports whether the table is being accessed via atable
scan or index. If you think that an index should be used, but showplan
reports a table scan, dbcc traceon(302) output can help you determine the
reason. It displays the costing computations for all optimizing query
clauses.

If thereisno clauseisincluded in dbcc traceon(302) output, there may be
problems with the way the clause is written. If a clause that you think
should limit the scan isincluded in dbcc traceon(302) output, look
carefully at its costing, and that of the chosen plan reported with dbcc
traceon(310).

Index is not selective enough

Anindex isselectiveif it helpsthe optimizer find a particular row or aset
of rows. Anindex on auniqueidentifier such asa Social Security Number
is highly selective, sinceit lets the optimizer pinpoint asingle row. An
index on a nonunique entry such as sex (M, F) is not very selective, and
the optimizer would use such an index only in very special cases.

Index does not support range queries

Too many indexes slow

Generally, clustered indexes and covering indexes provide good
performance for range queries and for search arguments (SARG) that
match many rows. Range queries that reference the keys of noncovering
indexes use the index for ranges that return alimited number of rows.

As the number of rows the query returns increases, however, using a
nonclustered index or a clustered index on a data-only-locked table can
cost more than atable scan.

data modification

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications.

Performance and Tuning: Locking 93

Detecting indexing problems

Every insert or delete operation affects the leaf level, (and sometimes
higher levels) of a clustered index on a data-only-locked table, and each
nonclustered index, for any locking scheme.

Updates to clustered index keys on allpages-locked tables can move the
rows to different pages, requiring an update of every nonclustered index.
Analyzetherequirementsfor each index and try to eliminate those that are
unnecessary or rarely used.

Index entries are too large

Try to keep index entriesas small aspossible. You can createindexeswith
keys up to 600 bytes, but those indexes can store very few rows per index
page, which increases the amount of disk I/O needed during queries. The
index has more levels, and each level has more pages.

The following example uses values reported by sp_estspace to
demonstrate how the number of index pages and leaf levels required
increases with key size. It creates nonclustered indexes using 10-, 20, and
40-character keys.

create tabl e denotable (cl10 char(10),
c20 char(20),
c40 char (40))
create index t10 on denotabl e(cl10)
create index t20 on denotabl e(c20)
create index t40 on denotabl e(c40)
sp_est space denot abl e, 500000

Table 6-1 shows the results.

Table 6-1: Effects of key size on index size and levels

Index, key size Leaf-level pages Index levels
t10, 10 bytes 4311 3
t20, 20 bytes 6946 3
t40, 40 bytes 12501 4

The output shows that the indexes for the 10-column and 20-column keys
each have three levels, while the 40-column key requires afourth level.

The number of pagesrequired is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows

94

Indexes with wide rows may be useful when:

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

The table has very wide rows, resulting in very few rows per data
page.

The set of queries run on the table provides|ogical choicesfor a
covering index.

Queries return a sufficiently large number of rows.

For example, if atable has very long rows, and only one row per page, a
query that needs to return 100 rows needs to access 100 data pages. An
index that covers this query, even with long index rows, can improve
performance.

For example, if the index rows were 240 bytes, the index would store 8
rows per page, and the query would need to access only 12 index pages.

Fixing corrupted indexes

If the index on one of your system tables has been corrupted, you can use
the sp_fixindex system procedure to repair the index. For syntax
information, see the entry for sp_fixindex in “System Procedures’ in the
Adaptive Server Reference Manual.

Repairing the system table index
Repairing a corrupted system table index requires the following steps:

0 Repairing the system table index with sp_fixindex

1

Performance and Tuning: Locking

Get theobject_name, object_ID, and index_ID of the corrupted index.
If you only have apage number and you need to find the object_name,
see the Adaptive Server Troubleshooting and Error Messages Guide
for instructions.

If the corrupted index is on a system table in the master database, put
Adaptive Server in single-user mode. See the Adaptive Server
Troubleshooting and Error Messages Guide for instructions.

If the corrupted index is on asystem table in a user database, put the
database in single-user mode and reconfigure to alow updates to
system tables:

1> use naster

95

Fixing corrupted indexes

2> go

1> sp_dbopti on dat abase_nane, "single user", true
2> go

1> sp_configure "all ow updates", 1

2> go

4 |ssuethesp_fixindex command:

1> use dat abase_nane

2> go

1> checkpoi nt

2> go

1> sp_fixi ndex database_nane, object_nane,
i ndex_I D

2> go

Note You must possess sa_role permissions to run sp_fixindex.

Run dbcc checktable to verify that the corrupted index is now fixed.
6 Disallow updates to system tables:

1> use naster
2> go

1> sp_configure "all ow updates”, O
2> go

7 Turn off single-user mode:

1> sp_dboption database_nane, "single user",
fal se
2> go

1> use dat abase_nane
2> go

1> checkpoi nt
2> go

Repairing a nonclustered index

Running sp_fixindex to repair a nonclustered index on sysobjects requires
several additional steps.

96 Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

0 Repairing a nonclustered index on sysobjects

1

2

Performance and Tuning: Locking

Perform steps 1-3, as described in “ Repairing the system table index
with sp_fixindex,” above.

I ssue the following Transact-SQL query:

1> use dat abase_nane
2> go

1> checkpoi nt
2> go

1> sel ect sysstat from sysobjects
2> where id =1
3> go

Save the original sysstat value.
Change the sysstat column to the value required by sp_fixindex:

1> updat e sysobjects

2> set sysstat = sysstat | 4096
3> where id =1

4> go

Run sp_fixindex:

1> sp_fixi ndex database_nane, sysobjects, 2
2> go

Restore the original sysstat value:

1> updat e sysobjects

2> set sysstat = sysstat_ ORI G NAL
3> where id = object_ID

4> go

Run dbcc checktable to verify that the corrupted index is now fixed.
Disallow updates to system tables:

1> sp_configure "all ow updates”, 0
2> go

Turn off single-user mode:

1> sp_dboption database_nane, "single user",
fal se
2> go

1> use dat abase_nane
2> go

97

Index limits and requirements

1> checkpoi nt
2> go

Index limits and requirements
The following limits apply to indexesin Adaptive Server:

Choosing indexes

You can create only one clustered index per table, sincethe datafor a
clustered index is ordered by index key.

You can create a maximum of 249 nonclustered indexes per table.

A key can be made up of as many as 31 columns. The maximum
number of bytes per index key is 600.

When you create a clustered index, Adaptive Server requires empty
free space to copy the rows in the table and allocate space for the
clustered index pages. It also requires space to re-create any
nonclustered indexes on the table.

The amount of space required can vary, depending on how full the
table's pages are when you begin and what space management
properties are applied to the table and index pages.

See “ Determining the space avail able for maintenance activities’ on
page 360 for more information.

The referential integrity constraints unique and primary key create
unique indexes to enforce their restrictions on the keys. By default,
unique constraints create nonclustered indexes and primary key
congtraints create clustered indexes.

When you are working with index selection you may want to ask these
questions:

98

What indexes are associated currently with a given table?

What are the most important processes that make use of the table?

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

What istheratio of select operations to datamodifications performed
on the table?

Has a clustered index been created for the table?
Can the clustered index be replaced by a nonclustered index?
Do any of the indexes cover one or more of the critical queries?

Is a composite index required to enforce the uniqueness of a
compound primary key?

What indexes can be defined as unique?

What are the mgjor sorting requirements?

Do some queries use descending ordering of result sets?

Do the indexes support joins and referential integrity checks?
Does indexing affect update types (direct versus deferred)?
What indexes are needed for cursor positioning?

If dirty reads are required, are there unique indexes to support the
scan?

Should IDENTITY columns be added to tables and indexes to
generate unique indexes? Unique indexes are required for updatable
cursors and dirty reads.

When deciding how many indexes to use, consider:

Space constraints

Access pathsto table

Percentage of data modifications versus select operations
Performance requirements of reports versus OLTP
Performance impacts of index changes

How often you can use update statistics

Index keys and logical keys

Index keys need to be differentiated from logical keys. Logical keys are
part of the database design, defining the relationships between tables:
primary keys, foreign keys, and common keys.

Performance and Tuning: Locking

99

Choosing indexes

When you optimize your queriesby creating indexes, thelogical keysmay
or may not be used as the physical keysfor creating indexes. You can
create indexes on columns that are not logical keys, and you may have
logical keys that are not used asindex keys.

Choose index keys for performance reasons. Create indexes on columns
that support the joins, search arguments, and ordering requirementsin
queries.

A common error isto create the clustered index for atable on the primary
key, even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes

These are general guidelines for clustered indexes:

100

Most allpages-locked tables should have clustered indexes or use
partitions to reduce contention on the last page of heaps.

In a high-transaction environment, the locking on the last page
severely limits throughput.

If your environment requiresalot of inserts, do not placethe clustered
index key on a steadily increasing value such asan IDENTITY
column.

Choose a key that placesinserts on random pages to minimize lock
contention while remaining useful in many queries. Often, the
primary key does not meet this condition.

This problem isless severe on data-only-locked tables, but isamajor
source of lock contention on allpages-locked tables.

Clustered indexes provide very good performance when the key
matches the search argument in range queries, such as:

where col value >= 5 and col val ue < 10

In allpages-locked tables, rows are maintained in key order and pages
arelinked in order, providing very fast performance for queriesusing
aclustered index.

In data-only-locked tables, rows are in key order after theindex is
created, but the clustering can decline over time.

Other good choicesfor clustered index keysare columnsused in order
by clausesand in joins.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

e If possible, do not include frequently updated columns as keysin
clustered indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current
location to anew page. Also, if theindex is clustered, but not unique,
updates are done in deferred mode.

Choosing clustered indexes

Choose indexes based on the kinds of where clauses or joins you perform.
Choicesfor clustered indexes are;

e Theprimary key, if it isused for where clauses and if it randomizes
inserts

¢ Columnsthat are accessed by range, such as:

col 1 between 100 and 200
col12 > 62 and < 70

e Columnsused by order by
e Columnsthat are not frequently changed
e Columnsusedinjoins

If there are several possible choices, choose the most commonly needed
physical order as afirst choice.

As a second choice, look for range queries. During performance testing,
check for “hot spots’ due to lock contention.

Candidates for nonclustered indexes

When choosing columns for nonclustered indexes, consider all the uses
that were not satisfied by your clustered index choice. In addition, look at
columns that can provide performance gains through index covering.

Ondata-only-locked tables, clustered indexes can performindex covering,
since they have aleaf level above the datalevel.

On alpages-locked tables, noncovered range queries work well for
clustered indexes, but may or may not be supported by nonclustered
indexes, depending on the size of the range.

Performance and Tuning: Locking 101

Choosing indexes

Index Selection

102

Consider using composite indexes to cover critical queries and to support
less frequent queries:

« Themost critical queries should be able to perform point queries and
matching scans.

e Other queries should be able to perform nonmatching scans using the
index, which avoids table scans.

Index selection allows you to determine which indexes are actively being
used and those that are rarely used.

This section assumes that the monitoring tables featureis already set up,
see Performance and Tuning: Monitoring and Analyzing for Performance,
and includes the following steps:

* Add a'loopback’ server definition.
* Runinstallmontables to install the monitoring tables.
e Grant mon_role to all users who need to perform monitoring.

» Set the monitoring configuration parameters. For more information,
see Performance and Tuning: Monitoring and Analyzing for
Performance.

You can use sp_monitorconfig to track whether number of open objects
or number of open indexes are sufficiently configured.

Index sel ection-usage uses the following five columns of the
monitoring access table, monOpenObjectActivity:

* IndexID — unique identifier for the index.

* OptSelectCount — reports the number of times that the corresponding
object (such asatable or index) was used as the access method by the
optimizer.

* LastOptSelectDate — reports the last time OptSelectCount was
incremented

* UsedCount — reports the number of times that the corresponding
object (such as atable or index) was used as an access method when
aquery executed.

» LastUsedDate — reports the last time UsedCount was incremented.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

If aplan has aready been compiled and cached, OptSelectCount is not
incremented each time the plan is executed. However, UsedCount is
incremented when a plan is executed. If no exec ison, OptSelectCount
valueis 3incremented, but the UsedCount value does not.

Monitoring data is nonpersistent. That is, when you restart the server, the
monitoring datais reset. Monitoring data is reported only for active
objects. For example, monitoring data does not exist for objects that have
not been opened since there are no active object descriptors for such
objects. For systems that are inadequately configured and have reused
object descriptors, monitoring data for these object descriptorsis
reinitialized and the data for the previous object is lost. When the old
object is reopened, its monitoring data is reset.

Examples of using the index selection

The following example queries the monitoring tables for the last time all
indexes for a specific object were selected by the optimizer aswell asthe
last time they were actually used during execution, and reports the counts
in each case:

sel ect DBID, ObjectlD, IndexlD, OptSelectCount, LastOptSel ectDate, UsedCount,
Last UsedDat e

from monOpenObj ect Activity

where DBID = db_id("financials_db") and CbjectlD = object _id(’ expenses’)
order by UsedCount

This exmaple displays all indexes that are not currently used in an
application or server:

select DBID, njectID, IndexlD, object_name(CbjectlD, DBID)
from monOpenObj ect Activity
where DBID = db_id("financials_db") and Opt Sel ect Count = 0

This example displays all indexes that are not currently used in an
application, and also provides a sample output:

select DBID, ObjectlD, IndexlD , object_nane(ObjectlD, DBID)
from nonCOpenChj ect Activity

where DBID = db_id("financials_db") and Opt Sel ect Count = 0

bj ect Nane id | ndexNane Opt Ct Last Opt Sel ect Dat e
UsedCount Last UsedDat e

cust oner 2 ci _nkey_ckey 3 Sep 27 2002 4:05PM
20 Sep 27 2002 4:05PM
cust oner 0 cust oner _x 3 Sep 27 2002 4: 08PM

Performance and Tuning: Locking 103

Choosing indexes

5
cust oner
5
cust oner
5
cust oner
0

Sep 27 2002 4:08PM

1 cust omer _x 1 Sep 27 2002 4. 06PM
Sep 27 2002 4:07PM

3 ci _ckey_nkey 1 Sep 27 2002 4:04PM
Sep 27 2002 4:05PM

cust omer _nation 0 Jan 1 1900 12: 00AM
1 1900 12: 00AM

In this example, the customer_nation index has not been used, which
resultsin the date “Jan 1 1900 12:00AM”.

Other indexing guidelines

104

Here are some other considerations for choosing indexes:

* If anindex key is unique, define it as unique so the optimizer knows
immediately that only one row matchesasearch argument or ajoin on
the key.

» If your database design uses referential integrity (the references
keyword or the foreign key...references keywordsin the create table
statement), the referenced columns must have a unique index, or the
attempt to create the referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on
the referencing column. If your application updates primary keys or
deletes rows from primary key tables, you may want to create an
index on the referencing column so that these lookups do not perform
atable scan.

» If your applications use cursors, see “Index use and requirements for
cursors’ on page 335.

* If you are creating an index on atable where there will be alot of
insert activity, use fillfactor to temporarily minimize page splits and
improve concurrency and minimize deadlocking.

» If you arecreating an index on aread-only table, use afilifactor of 100
to make the table or index as compact as possible.

* Keepthesizeof thekey assmall aspossible. Your index treesremain
flatter, accelerating tree traversals.

e Usesmal datatypes whenever it fits your design.

* Numerics compare dlightly faster than strings internally.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

e Variable-length character and binary types require more row
overhead than fixed-length types, so if thereislittle difference
between the average length of a column and the defined length,
use fixed length. Character and binary types that accept null
values are variable-length by definition.

¢ Whenever possible, use fixed-length, non-null typesfor short
columns that will be used as index keys.

e Besurethat the datatypes of the join columnsin different tables are
compatible. If Adaptive Server has to convert a datatype on one side
of ajoin, it may not use an index for that table.

See" Datatype mismatches and query optimization” on page 24 in
Performance and Tuning: Optimizer for more information.

Choosing nonclustered indexes

When you consider adding nonclustered indexes, you must weigh the
improvement in retrieval time against the increase in data modification
time. In addition, you need to consider these questions:

e How much space will the indexes use?

¢ How volatileisthe candidate column?

¢ How selective are the index keys? Would a scan be better?
e Aretherealot of duplicate values?

Because of data modification overhead, add nonclustered indexes only
when your testing shows that they are helpful.

Performance price for data modification
Each nonclustered index needs to be updated, for all locking schemes:

* For eachinsert into the table
* For each delete from the table

An updateto thetablethat changes part of anindex’skey requiresupdating
just that index.

For tables that use allpages locking, all indexes need to be updated:

Performance and Tuning: Locking 105

Choosing indexes

e For any update that changes the location of arow by updating a
clustered index key so that the row moves to another page

« For every row affected by a data page split

For allpages-locked tables, exclusive locks are held on affected index
pagesfor theduration of thetransaction, increasing lock contention aswell
as processing overhead.

Some applications experience unacceptable performance impacts with
only three or four indexes on tables that experience heavy data
modification. Other applications can perform well with many more tables.

Choosing composite indexes

If your analysis shows that more than one column is a good candidate for
aclustered index key, you may be able to provide clustered-like access
with a composite index that covers a particular query or set of queries.
These include:

* Range queries.

» Vector (grouped) aggregates, if both the grouped and grouping
columnsareincluded. Any search arguments must also beincluded in
the index.

* Queriesthat return a high number of duplicates.
* Queriesthat include order by.

* Queriesthat table scan, but use a small subset of the columns on the
table.

Tablesthat are read-only or read-mostly can be heavily indexed, aslong as
your database has enough space available. If thereislittle update activity
and high select activity, you should provideindexesfor al of your frequent
gueries. Be sure to test the performance benefits of index covering.

Key order and performance in composite indexes

106

Covered queries can provide excellent response time for specific queries
when the leading columns are used.

With the composite nonclustered index onau_Iname, au_fname, au_id, this
query runs very quickly:

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

select au_id
from aut hors
where au_fname = "Eliot" and au_l name = "W k"

This covered point query needs to read only the upper levels of the index
and asingle page in the leaf-level row in the nonclustered index of a 5000-
row table.

This similar-looking query (using the same index) does not perform quite
aswell. Thisquery is still covered, but searches on au_id:

sel ect au_fnane, au_l name
from aut hors
where au_id = "A1714224678"

Since this query does not include the leading column of theindex, it hasto
scan the entire leaf level of theindex, about 95 reads.

Adding acolumn to theselect list in the query above, which may seem like
aminor change, makes the performance even worse:

sel ect au_fnane, au_l name, phone
from aut hors
where au_id = "Al714224678"

This query performs atable scan, reading 222 pages. In this case, the
performance is noticeably worse. For any search argument that is not the
leading column, Adaptive Server has only two possible access methods: a
table scan, or a covered index scan.

It does not scan the leaf level of theindex for a non-leading search
argument and then access the data pages. A composite index can be used
only when it covers the query or when the first column appearsin the
where clause.

For a query that includes the leading column of the composite index,
adding a column that is not included in the index adds only a single data
page read. This query must read the data page to find the phone number:

sel ect au_id, phone
from aut hors
where au_fname = "Eliot" and au_l name = "W/ k"

Table 6-2 showsthe performance characteristics of different where clauses
with anonclustered index on au_Iname, au_fname, au_id and no other
indexes on the table.

Performance and Tuning: Locking 107

Choosing indexes

Table 6-2: Composite nonclustered index ordering and

performance
Performance with the indexed Performance with other
Columns in the where clause columns in the select list columns in the select list
au_Iname Good; index used to descend tree; data Good; index used to descend tree;
or au Iname. au fname level is not accessed datais accessed (one more page
B B read per row)

or au_Ilname, au_fname, au_id

au_fname
or au_id

or au_fname, au_id

Moderate; index is scanned to return ~ Poor; index not used, table scan
values

Choose the ordering of the composite index so that most queries form a
prefix subset.

Advantages and disadvantages of composite indexes
Composite indexes have these advantages:

108

A composite index provides opportunities for index covering.

If queries provide search arguments on each of the keys, the
composite index requires fewer 1/0Os than the same query using an
index on any single attribute.

A composite index is a good way to enforce the uniqueness of
multiple attributes.

Good choices for composite indexes are;

Lookup tables
Columns that are frequently accessed together
Columns used for vector aggregates

Columns that make a frequently used subset from a table with very
wide rows

The disadvantages of composite indexes are:

Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

An updateto any attribute of acomposite index causestheindex to be
modified. The columns you choose should not be those that are
updated often.

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

Poor choices are;
¢ Indexesthat are nearly as wide asthe table

e Compositeindexeswhere only aminor key isused in the where clause

Techniques for choosing indexes

This section presents astudy of two queriesthat must accessasingletable,
and the indexing choices for these two queries. The two queries are:

e A range query that returns alarge number of rows

e A point query that returns only one or two rows

Choosing an index for a range query
Assumethat you need to improve the performance of the following query:

select title
fromtitles
where price between $20.00 and $30. 00

Some basic statistics on the table are:
e Thetable has 1,000,000 rows, and uses allpages locking.

e Thereare 10 rows per page; pagesare 75 percent full, so the table has
approximately 135,000 pages.

e 190,000 (19%) of thetitles are priced between $20 and $30.
With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book
and begin reading sequentially until it getsto thelast $30 book. With pages
about 75 percent full, the average number of rows per pageis7.5. To read
190,000 matching rows, the query would read approximately 25,300
pages, plus 3 or 4 index pages.

Withanonclustered index on price and random distribution of price values,
using the index to find the rows for this query requires reading about 19
percent of the leaf level of the index, about 1,500 pages.

Performance and Tuning: Locking 109

Techniques for choosing indexes

If the price values are randomly distributed, the number of data pages that
must beread is likely to be high, perhaps as many data pages as there are
qualifying rows, 190,000. Since a table scan requires only 135,000 pages,
you would not want to use this nonclustered.

Another choice is a nonclustered index on price, title. The query can
perform amatching index scan, using the index to find the first page with
aprice of $20, and then scanning forward on the leaf level until it finds a
price of more than $30. Thisindex requires about 35,700 leaf pages, so to
scan the matching leaf pages requires reading about 19 percent of the
pages of thisindex, or about 6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements

Theindex choice for the range query on price produced aclear
performance choice when all possibly useful indexes were considered.
Now, assume this query also needs to run against titles:

sel ect price
fromtitles
where title = "Looking at Leeks"

You know that there are very few duplicatetitles, so this query returnsonly
one or two rows.

Considering both this query and the previous query, Table 6-3 shows four
possible indexing strategies and estimate costs of using each index. The
estimates for the numbers of index and data pages were generated using a
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75
The values were rounded for easier comparison.

Table 6-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title
1 Nonclustered on title 36,800 Clustered index, about 26,600 Nonclustered index, 6 1/0Os
Clustered on price 650 pages (135,000 *.19)
With 16K 1/0: 3,125 I/Os
2 Clustered ontitle 3,770 Table scan, 135,000 pages Clustered index, 6 1/0s
Nonclustered on price 6,076 With 16K 1/O: 17,500 I/Os

110

Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

Possible index choice Index pages Range query on price Point query on title
3 Nonclustered on title, 36,835 Nonmatching index scan, Nonclustered index,
price about 35,700 pages 51/0s
With 16K 1/0: 4,500 1/0Os
4 Nonclustered on price, 36,835 Matching index scan, about Nonmatching index scan,
title 6,800 pages (35,700 *.19) about 35,700 pages
With 16K 1/0: 850 I/Os With 16K 1/0: 4,500 1/Os

Examining the figuresin Table 6-3 shows that:

e For therange query on price, choice 4 is best; choices 1 and 3 are
acceptable with 16K /0.

e For the point query ontitles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for acombination of these two queriesisto use
two indexes:

e Choice 4, for range queries on price.

e Choice 2, for point queries on title, since the clustered index requires
very little space.

You may need additional information to help you determine which
indexing strategy to use to support multiple queries. Typica
considerations are:

¢ Whatisthefreguency of each query? How many times per day or per
hour isthe query run?

¢ What are the response time requirements? |s one of them especially
time critical?

e What are the response time requirements for updates? Does creating
more than one index slow updates?

e Istherange of valuestypical ? Isawider or narrower range of prices,
such as $20 to $50, often used? How do different ranges affect index
choice?

« Istherealarge data cache? Are these queries critical enough to
provide a 35,000-page cache for the nonclustered composite indexes
in index choice 3 or 4? Binding this index to its own cache would
provide very fast performance.

e What other queries and what other search arguments are used? Isthis
table frequently joined with other tables?

Performance and Tuning: Locking 111

Index and statistics maintenance

Index and statistics maintenance

To ensure that indexes evolve with your system:

* Monitor queriesto determine if indexes are still appropriate for your
applications.

Periodically, check the query plans, asdescribed in Chapter 5, “Using
set showplan,” in the Performance and Tuning: Monitoring and
Analyzing book and the I/O statistics for your most frequent user
queries. Pay specia attention to noncovering indexes that support
range queries. They are most likely to switch to table scansif the data
distribution changes

» Drop and rebuild indexes that hurt performance.
* Keepindex statistics up to date.

» Use space management propertiesto reduce page splits and to reduce
the frequency of maintenance operations.

Dropping indexes that hurt performance

Drop indexes that hurt performance. If an application performs data
modifications during the day and generatesreports at night, you may want
to drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever,
actually used by the query optimizer. Make sure that you base indexes on
the current transactions and processes that are being run, not on the
original database design.

Check query plansto determine whether your indexes are being used.

Foe moreinformation on maintai ning indexes see“Maintaining index and
column statistics’ on page 350 and “ Rebuilding indexes’ on page 351.

Choosing space management properties for indexes

Space management properties can help reduce the frequency of index
maintenance. In particular, fillfactor can reduce the number of page splits
on leaf pages of nonclustered indexes and on the data pages of allpages-
locked tables with clustered indexes.

112 Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

See Chapter 9, “ Setting Space Management Properties,” for more
information on choosing fillfactor values for indexes.

Additional indexing tips

Here are some additional suggestions that can lead to improved
performance when you are creating and using indexes:

e Modify the logical design to make use of an artificial column and a
lookup table for tables that require alarge index entry.

¢ Reducethe size of anindex entry for afrequently used index.

» Dropindexesduring periodswhen frequent updates occur and rebuild
them before periods when frequent selects occur.

« If you do frequent index maintenance, configure your server to speed
up the sorting.

See“ Configuring Adaptive Server to speed sorting” on page 348 for
information about configuration parametersthat enable faster sorting.

Creating artificial columns

When indexes become too large, especialy composite indexes, it is
beneficial to create an artificial column that is assigned to arow, with a
secondary lookup tablethat isused to trand ate between theinternal 1D and
the original columns.

This may increase response time for certain queries, but the overall
performance gain due to a more compact index and shorter datarowsis
usually worth the effort.

Keeping index entries short and avoiding overhead

Avoid storing purely numeric IDs as character data. Use integer or
numeric IDswhenever possible to:

e Save storage space on the data pages

e Makeindex entries more compact

Performance and Tuning: Locking 113

Additional indexing tips

e Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on
char columns. For short index keys, especially thosewith littlevariationin
length in the column data, use char for more compact index entries.

Dropping and rebuilding indexes

You might drop nonclustered indexes prior to a major set of inserts, and
then rebuild them afterwards. In that way, the inserts and bulk copies go
faster, since the nonclustered indexes do not have to be updated with every
insert.

For more information, see “ Rebuilding indexes’ on page 351.

Configure enough sort buffers

The sort buffers decides how many pages of datayou can sort in each run.
That isthe basis for the logrithmic function on cal culating the number of
runs needed to finish the sort.

For example, if you have 500 buffers, then the number of runsiscalculated
with "log (number of pagesin table) with 500 as the log base".

Also notethat the number of sort buffersisshared by threadsinthe parallel
sort, if you do not have enough sort buffers, the parallel sort may not work
asfast asit should.

Create the clustered index first

Do not create nonclustered indexes, then clustered indexes. When you
create the clustered index all previous nonclustered indexes are rebuilt.

Configure large buffer pools

To set up for larger O/Os, configure large buffers poolsin anamed cache
and bind the cache to the table.

114 Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

Asynchronous log service

Enabling ALS

Issuing a checkpoint

Disabling ALS

Displaying ALS

Asynchronouslog service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

You cannot use ALSif you have fewer than 4 engines. If you try to enable
AL S with fewer than 4 online engines an error message appears.

You can enable, disable, or configure ALS using the sp_dboption stored
procedure.

sp_dbopti on <db Nane>, "async |og service",
"true|fal se”

After issuing sp_dboption, you must issue acheckpoint in the database for
which you are setting the ALS option:

sp_dboption "nydb", "async |og service", "true"
use mydb
checkpoi nt

Before you disable ALS, make sure there are no active usersin the
database. If there are, you receive an error message when you issue the
checkpoint:

sp_dboption "nydb", "async |og service", "false"
use nydb

checkpoi nt

Error 3647: Cannot put database in single-user node.
Wait until all users have | ogged out of the database
and i ssue a CHECKPO NT to disable "async | og
service"

If there are no active users in the database, this example disables ALS:

sp_dboption "nydb", "async |og service", "false"
use mydb
checkpoi nt

You can see whether ALS is enabled in a specified database by checking
sp_helpdb.

sp_hel pdb "nydb"
mydb 3.0 MB sa 2
July 09, 2002
sel ect into/bul kcopy/pllsort, trunc |og on

Performance and Tuning: Locking 115

Asynchronous log service

chkpt,
async | og service

Understanding the user log cache (ULC) architecture

Adaptive Server’s logging architecture features the user log cache, or
ULC, by which each task ownsits own log cache. No other task can write
tothiscache, and thetask continueswriting to the user log cache whenever
atransaction generates alog record. When the transaction commits or
aborts, or the user log cache isfull, the user log cacheis flushed to the
common log cache, shared by all the current tasks, which is then written
to the disk.

Flushing the ULC isthefirst part of acommit or abort operation. It
requires the following steps, each of which can cause delay or increase
contention:

1 Obtaining alock on thelast log page.
2 Allocating new log pages if necessary.
3 Copying the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold alock on the last
log page, which preventsany other tasksfrom writing to thelog cache
or performing commit or abort operations.

4 Flush thelog cache to disk.

Step 4 requires repeated scanning of the log cache to issue write
commands on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock
to which thelog is bound. Under alarge transaction load, contention
on this spinlock can be significant.

When to use ALS

You can enable AL S on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more
online engines:

e Heavy contention on the last log page.

116 Adaptive Server Enterprise

CHAPTER 6 Indexing for Performance

You can tell that the last log page is under contention when the
sp_sysmon output in the Task Management Report section shows a
significantly high value. For example:

Table 6-4: Log page under contention

Task
Management per sec per xact count % of total
Log Semaphore 58.0 0.3 34801 73.1
Contention
« Heavy contention on the cache manager spinlock for the log cache.
You cantell that the cache manager spinlock isunder contention when
the sp_sysmon output in the Data Cache Management Report section
for the database transaction log cache shows a high value in the
Spinlock Contention section. For example;
Table 6-5:
Cache c_log ‘ per sec ‘ per xact | count | % of total
Spinlock n/a na n/a 40.0%
Contention

e Underutilized bandwidth in the log device.

Note You should use ALS only when you identify a single database with
high transaction requirements, since setting AL S for multiple databases
may cause unexpected variationsin throughput and responsetimes. If you
want to configure ALS on multiple databases, first check that your
throughput and response times are satisfactory.

Using the ALS

Two threads scan the dirty buffers (buffers full of data not yet written to
the disk), copy the data, and write it to the log. These threads are:

¢ TheUser Log Cache (ULC) flusher
e Thelog Writer.

Performance and Tuning: Locking 117

Asynchronous log service

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the
user log cache of atask into the general log cache. When atask isready to
commit, the user enters a commit request into the flusher queue. Each
entry has a handle, by which the ULC flusher can access the ULC of the
task that queued the request. The UL C flusher task continuously monitors
the flusher queue, removing requests from the queue and servicing them
by flushing UL C pages into the log cache.

Log writer

Once the UL C flusher has finished flushing the ULC pages into the log
cache, it queues the task request into a wakeup queue. The log writer
patrols the dirty buffer chain in the log cache, issuing awrite command if
it finds dirty buffers, and monitors the wakeup queue for tasks whose
pages are all written to disk. Since the log writer patrols the dirty buffer
chain, it knows when a buffer is ready to write to disk.

Changes in stored procedures

Asynchronous log service changes the stored procedures sp_dboption and
sp_helpdb:

» sp_dboption adds an option that enables and disables ALS.
* sp_helpdb adds acolumn to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual.

118 Adaptive Server Enterprise

CHAPTER 7

How Indexes Work

This chapter describes how Adaptive Server storesindexes and how it
uses indexes to speed dataretrieval for select, update, delete, and insert
operations.

Topic Page
Types of indexes 120
Clustered indexes on allpages-locked tables 122
Nonclustered indexes 131
Index covering 138
Indexes and caching 141

Indexes are the most important physical design element in improving
database performance:

* Indexes help prevent table scans. Instead of reading hundreds of data
pages, afew index pages and data pages can satisfy many queries.

* For some queries, data can be retrieved from a nonclustered index
without ever accessing the data rows.

e Clustered indexes can randomize data inserts, avoiding insert “ hot
spots’ on the last page of atable.

e Indexes can help avoid sorts, if the index order matches the order of
columnsin an order by clause.

In addition to their performance benefits, indexes can enforce the
unigueness of data

Indexes are database objects that can be created for atable to speed direct
access to specific data rows. Indexes store the values of the key(s) that
were named when the index was created, and logical pointers to the data
pages or to other index pages.

Although indexes speed data retrieval, they can slow down data
modifications, since most changes to the data also require updating the
indexes. Optimal indexing demands:

Performance and Tuning: Locking 119

Types of indexes

e Anunderstanding of the behavior of queries that access unindexed
heap tables, tables with clustered indexes, and tables with
nonclustered indexes

e Anunderstanding of the mix of queriesthat run on your server

e Anunderstanding of the Adaptive Server optimizer

Types of indexes

Index pages

120

Adaptive Server provides two types of indexes:

* Clustered indexes, where the table datais physically stored in the
order of the keys on the index:

» For allpages-locked tables, rowsare stored in key order on pages,
and pages are linked in key order.

* Fordata-only-locked tables, indexesare used to direct the storage
of data on rows and pages, but strict key ordering is not
mai ntained.

* Nonclustered indexes, where the storage order of datain thetableis
not related to index keys

You can create only one clustered index on atable because thereis only
one possible physical ordering of the data rows. You can create up to 249
nonclustered indexes per table.

A table that has no clustered index is called a heap. Therowsin thetable
arein no particular order, and all new rows are added to the end of the
table. Chapter 8, “Data Storage,” discusses heaps and SQL operations on
heaps.

Index entries are stored as rows on index pagesin aformat similar to the
format used for datarows on data pages. Index entries store the key values
and pointersto lower levels of theindex, to the data pages, or to individual
datarows.

Adaptive Server uses B-tree indexing, so each node in the index structure
can have multiple children.

Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Root level

Leaf level

Index entries are usually much smaller than adatarow in a data page, and
index pages are much more densely populated than data pages. If a data
row has 200 bytes (including row overhead), there are 10 rows per page.

Anindex on a 15-byte field has about 100 rows per index page (the
pointersrequire 4-9 bytes per row, depending on the type of index and the
index level).

Indexes can have multiple levels:
e Root level
o Leaf level

* Intermediate level

Theroot level isthe highest level of theindex. Thereisonly oneroot page.
If an allpages-locked tableis very small, so that the entireindex fitson a
single page, there are no intermediate or leaf levels, and the root page
stores pointers to the data pages.

Data-only-locked tables always have aleaf level between the root page
and the data pages.

For larger tables, the root page stores pointers to the intermediate level
index pages or to |eaf-level pages.

The lowest level of theindex isthe leaf level. At the leaf level, the index
contains akey value for each row in the table, and the rows are stored in
sorted order by the index key:

e For clustered indexes on allpages-locked tables, the leaf level isthe
data. No other level of theindex contains oneindex row for each data
row.

e For nonclustered indexes and clustered indexes on data-only-locked
tables, the leaf level contains the index key value for each row, a
pointer to the page where the row is stored, and a pointer to the rows
on the data page.

Theledf level isthelevel just abovethedata; it containsoneindex row
for each data row. Index rows on the index page are stored in key
value order.

Performance and Tuning: Locking 121

Clustered indexes on allpages-locked tables

Intermediate level

Index Size

All levels between the root and leaf levels are intermediate levels. An
index on alarge table or an index using long keys may have many
intermediate levels. A very small allpages-locked table may not have an
intermediate level at dl; the root pages point directly to the leaf level.

Table 7-1 describes the new limitsfor index sizefor APL and DOL tables:

Table 7-1: Index row-size limit

User-visible index row-size Internal index row-
Page size limit size limit
2K (2048 bytes) 600 650
4K (4096bytes) 1250 1310
8K (8192 bytes) 2600 2670
16K (16384 bytes) | 5300 5390

Because you can create tables with columns wider than the limit for the
index key, these columns become non-indexable. For example, if you
perform the following on a 2K page server, then try to create an index on
3, the command fails and Adaptive Server issues an error message
because column c3 is larger than the index row-size limit (600 bytes).

create table t1 (
cl int

c2 int

c3 char (700))

“Non-indexable” does not mean that you cannot use these columnsin
search clauses. Even though a column is non-indexable (asin ¢3, above),
you can till create statistics for it. Also, if you include the columnina
where clause, it will be evaluated during optimization.

Clustered indexes on allpages-locked tables

122

In clustered indexeson allpages-locked tables, leaf-level pagesarealsothe
data pages, and all rows are kept in physical order by the keys.

Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Physical ordering means that:
« All entries on adata page are in index key order.

« By following the “next page” pointers on the data pages, Adaptive
Server reads the entire table in index key order.

Ontheroot and intermediate pages, each entry pointsto apage on the next
level.

Clustered indexes and select operations

To select a particular last name using a clustered index, Adaptive Server
first uses sysindexes to find the root page. It examines the values on the
root page and then follows page pointers, performing a binary search on
each page it accesses as it traverses the index. See Figure 7-1 below.

Figure 7-1: Selecting a row using a clustered index, allpages-

locked table
select *
from employeeﬁ) ' Page 1137
where Iname = "Green Key Pointer Bennet
Page 1007 Chan
Bennet 1132 Dull
Key Pointer Greane 1133 Edwards
Page T00T Hunter 1127 Page T133
Bennet 1007 Greane
Karsen 1009 Page 1009 Green
Smith 1062 Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Performance and Tuning: Locking 123

Clustered indexes on allpages-locked tables

On theroot level page, “Green” is greater than “Bennet,” but less than
Karsen, so the pointer for “Bennet” is followed to page 1007. On page
1007, “Green” is greater than “Greane,” but less than “Hunter,” so the
pointer to page 1133 isfollowed to the data page, where the row islocated
and returned to the user.

Thisretrieval viathe clustered index requires:
* Oneread for theroot level of the index

* Oneread for the intermediate level

e Oneread for the data page

These reads may come either from cache (called alogical read) or from
disk (called aphysical read). Ontablesthat arefrequently used, the higher
levels of the indexes are often found in cache, with lower levels and data
pages being read from disk.

Clustered indexes and insert operations

When you insert arow into an allpages-locked table with a clustered
index, the data row must be placed in physical order according to the key
value on the table.

Other rows on the data page move down on the page, as needed, to make
room for the new value. Aslong asthere is room for the new row on the
page, the insert does not affect any other pagesin the database.

The clustered index is used to find the location for the new row.

Figure 7-2 shows a simple case where there is room on an existing data
page for the new row. In this case, the key valuesin the index do not need
to change.

124 Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Figure 7-2: Inserting arow into an allpages-locked table with a
clustered index

insert employees (Iname) Page 1132
values ("Greco") Bennet
. Chan
Key Pointer Dull
Edwards
Page 1007
Bennet 1132
Key Pointer Page 1133
Greane 1133 | Greane
Page 1001 Hunter 1127 G
Bennet 1007 G:e02
Karsen 1009 Grzzne
Smith 1062 Page 1009
\ Karsen 1315
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Page splitting on full data pages

If thereis not enough room on the data page for the new row, a page split
must be performed.

Performance and Tuning: Locking

A new data page is allocated on an extent already in use by the table.
If thereis no free page available, a new extent is allocated.

The next and previous page pointers on adjacent pages are changed to
incorporate the new page in the page chain. This requires reading
those pages into memory and locking them.

Approximately half of the rows are moved to the new page, with the
new row inserted in order.

The higher levels of the clustered index change to point to the new
page.

If the table also has nonclustered indexes, all pointersto the affected
datarows must be changed to point to the new page and row locations.

125

Clustered indexes on allpages-locked tables

In some cases, page splitting is handled dlightly differently.
See “Exceptions to page splitting” on page 126.

InFigure 7-3, the page split requires adding anew row to an existing index
page, page 1007.

Figure 7-3: Page splitting in an allpages-locked table with a
clustered index

Page 1133
Greane Before
Greco Page 1132
Green Bennet
Greene Chan
Dull
Edwards
insert employees (Iname)
values ("Greaves") Key Pointer Page 1133
Greane
Page 1007 Greaves
Bennet 1132 Greco
. Greane 1133
Key Pointer Green 1124
Page 1001 Hunter 1127
Bennet 1007 Page 1144
Karsen 1009 Page 1009 Green
Smith 1062 Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Exceptions to page splitting
There are exceptions to 50-50 page splits:

e |If youinsert ahugerow that cannot fit on either the page before or the
page after the page that requires splitting, two new pages are
allocated, one for the huge row and one for the rows that follow it.

126 Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

e If possible, Adaptive Server keeps duplicate values together when it
splits pages.

e If Adaptive Server detectsthat all inserts are taking place at the end
of the page, dueto aincreasing key value, the page is not split when
itistimetoinsert anew row that does not fit at the bottom of the page.
Instead, a new page is allocated, and the row is placed on the new

page.

e |f Adaptive Server detectsthat insertsaretaking placein order at other
|ocations on the page, the page is split at the insertion point.

Page splitting on index pages

If anew row needsto be added to afull index page, the page split process
on theindex pageis similar to the data page split.

A new pageisallocated, and half of the index rows are moved to the new
page.

A new row isinserted at the next highest level of the index to point to the
new index page.

Performance impacts of page splitting

Page splits are expensive operations. In addition to the actual work of
moving rows, allocating pages, and logging the operations, the cost is
increased by:

e Updating the clustered index itself

e Updating the page pointers on adjacent pages to maintain page
linkage

e Updating all nonclustered index entriesthat point to the rows affected
by the split

When you create aclustered index for atablethat will grow over time, you
may want to usefillfactor to | eave room on data pagesand index pages. This
reduces the number of page splits for atime.

See “ Choosing space management properties for indexes’ on page 321.

Performance and Tuning: Locking 127

Clustered indexes on allpages-locked tables

Overflow pages

128

Special overflow pages are created for nonunique clustered indexes on
allpages-locked tables when anewly inserted row has the same key asthe
last row on afull data page. A new data page is allocated and linked into
the page chain, and the newly inserted row is placed on the new page (see
Figure 7-4).

Figure 7-4: Adding an overflow page to a clustered index, allpages-
locked table

insert employees (Iname)

values("Greene")

Before insert

After insert

Page 1133
Greane
Page 1133 Greco
Greane Green
Greco Greene
Green
Greene Overflow data | Page 1156
Greene
Page 1134 page
Gresham
Gridley
Page 1134
Gresham
Gridley
Data pages

The only rows that will be placed on this overflow page are additional
rows with the same key value. In a nonunique clustered index with many
duplicate key values, there can be numerous overflow pages for the same
value.

The clustered index does not contain pointers directly to overflow pages.
Instead, the next page pointers are used to follow the chain of overflow
pages until avalueisfound that does not match the search value.

Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Clustered indexes and delete operations

When you delete arow from an all pages-locked table that has a clustered
index, other rows on the page move up to fill the empty space so that the
data remains contiguous on the page.

Figure 7-5 shows a page that has four rows before a del ete operation
removesthe second row on the page. The two rowsthat follow the del eted

row are moved up.

Figure 7-5: Deleting a row from a table with a clustered index

Before delete Page 1133
Greane
Green
Greco
Greene
delete Page 1132
from employees Bennet
where Iname = "Green"] Chan
Key Pointer Dull
Page 1007 Edwards
Bennet 1132
. Greane 1133
Key Pointer Hunter 1127
Page 1001 rage 1133
Bennet 1007 greane
Karsen 1009 Page 1009 reco
Smith 1062 T Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Performance and Tuning: Locking

Data to be
deleted

129

Clustered indexes on allpages-locked tables

Deleting the last row on a page

If you delete the last row on a data page, the page is deallocated and the
next and previous page pointers on the adjacent pages are changed.

The rows that point to that page in the leaf and intermediate levels of the
index are removed.

If the deall ocated data page is on the same extent as other pages bel onging
to thetable, it can be used again when that table needs an additional page.

If the deall ocated data page is the last page on the extent that belongs to
the table, the extent is also deallocated and becomes available for the
expansion of other objectsin the database.

In Figure 7-6, which shows the table after the deletion, the pointer to the
deleted page has been removed from index page 1007 and the following
index rows on the page have been moved up to keep the used space
contiguous.

130 Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Figure 7-6: Deleting the last row on a page (after the delete)

delete
from employees Page 1133
where Iname = "Gridley Greane Page TT34
Key Pointer g:z::e
Page R1007
) Bennet 1132
Key Pointer Greane 1133
Page 1001 /'Hunter 1127 —\[Empty page
Bennet 1007 available for
Karsen 1009 reallocation
Smith 1062 Page 1009
Karsen 1315
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Index page merges
If you delete a pointer from an index page, leaving only one row on that
page, the row is moved onto an adjacent page, and the empty pageis
deallocated. The pointers on the parent page are updated to reflect the
changes.

Nonclustered indexes

The B-tree works much the same for nonclustered indexes as it does for
clustered indexes, but there are some differences. In nonclustered indexes:

Performance and Tuning: Locking 131

Nonclustered indexes

Leaf pages revisited

e Theleaf pages are not the same as the data pages.
e Theleaf level stores one key-pointer pair for each row in the table.

e Theleaf-level pages store the index keys and page pointers, plus a
pointer to the row offset table on the data page. This combination of
page pointer plus the row offset number is called therow ID.

e Theroot and intermediate levels storeindex keys and page pointersto
other index pages. They also store the row ID of the key’s data row.

With keys of the same size, nonclustered indexes require more space than
clustered indexes.

The leaf page of an index is the lowest level of the index where al of the
keysfor the index appear in sorted order.

In clustered indexes on allpages-locked tables, the data rows are stored in
order by the index keys, so by definition, the data level isthe leaf level.
Thereis no other level of the clustered index that contains one index row
for each data row. Clustered indexes on allpages-locked tables are sparse
indexes.

Thelevel above the data contains one pointer for every data page, not data
row.

In nonclustered indexes and clustered indexes on data-only-locked tables,
thelevel just above the dataisthe leaf level: it contains akey-pointer pair
for each data row. These indexes are dense. At the level above the data,
they contain one index row for each data row.

Nonclustered index structure

132

The table in Figure 7-7 shows a nonclustered index on Iname. The data
rows at the far right show pages in ascending order by employee_id (10,
11, 12, and so on) because there is a clustered index on that column.

The root and intermediate pages store:
e Thekey value
e TherowID

Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Key

RowlD Pointer

e The pointer to the next level of the index
The leaf level stores:

e Thekey value

 Therow ID

Therow ID in higher levels of the index is used for indexes that allow
duplicate keys. If a data modification changes the index key or deletes a
row, therow ID positively identifies all occurrences of the key at al index
levels.

Figure 7-7: Nonclustered index structure

Bennet
Karsen
Smith

Page 1001
4211
14113 10
307,2

1007

1062

Page 1242

Key Pointer 10 O'Leary

11 Ringer

. Page 1132 12 White

Key RowID Pointer {sennet 211 - Jemcins
/o L

Bennet |1421,1 1132 u , Page 1307

Edwards {1018,5 14 Hunter

Greane 1307,4 1133 A
Hunter [1307,1 [1127 15 Smith
Page 1133 16 Ringer

Root page

Jenkins 1p42,4

Page 1409
21 Dull

22 Greene
23 White

\Greane 1p07,4 Z 17 Greane
Green 1421,2
Page 1009 Greene 1409,2 Page 14721
Karsen 1411,3 131p 18 Bennet
19 Green
Page 1127 20 Yokomoto
Hunter 1807,1

Intermediate Leaf pages Data pages

Performance and Tuning: Locking 133

Nonclustered indexes

Nonclustered indexes and select operations

When you select arow using anonclustered index, the search starts at the
root level. sysindexes.root stores the page number for the root page of the
nonclustered index.

InFigure 7-8, “Green” isgreater than “Bennet,” but lessthan “Karsen,” so
the pointer to page 1007 is followed.

“Green” isgreater than “ Greane,” but lessthan “Hunter,” so the pointer to
page 1133 is followed. Page 1133 is the leaf page, showing that the row
for “Green” isrow 2 on page 1421. This page isfetched, the “2” bytein
the offset table is checked, and the row isreturned from the byte position
on the data page.

Figure 7-8: Selecting rows using a nonclustered index

select *
from employee Key Pointer Pt Lo
where Iname = "Green" Ray QO’Leary
B PagelliZlle Ron | Ringer
Key RowlD Pointer Cﬁgg“ 1129.3 Lisa | White
' Bob | Jenkins
page T007 Dull 1409,1
. Bennet |1421,1 |1132 Edwards | 10185 ~ Page 1307
Key RowlD Pointer Greane [1307.4 |[1133 Tim | Hunter
Page 1001 Hunter [1307,1 |1127 \ Page 1133 Liv. | Smith
Bennet |1421,1 |1007 Greane 1307.4 Ann | Ringer
Karsen [1411,3 |1009 Green 14212 Jo Greane
Smith | 1307,2 | 1062 PagE TO09 Greene 14092 Page TAZT
Karsen |1411,3 |1315 lan Bennet
Andy| Green
Page 1127 Les | Yokomoto
Hunter 1307,1
Jenkins 12424 Page 1409
Chad| Dull
Eddy| Greene
Gabe| White
Kip Greco
Root page Intermediate Leaf pages Data pages

134 Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Nonclustered index performance
The query in Figure 7-8 requires the following I/O:
e Oneread for theroot level page
e Oneread for theintermediate level page
e Oneread for the leaf-level page
e Oneread for the data page

If your applications use aparticular nonclustered index frequently, the root
and intermediate pages will probably be in cache, so only one or two
physical disk I/0Os need to be performed.

Nonclustered indexes and insert operations

When you insert rows into a heap that has a nonclustered index and no
clustered index, the insert goes to the last page of the table.

If the heap is partitioned, the insert goes to the last page on one of the
partitions. Then, the nonclustered index is updated to include the new row.

If thetable hasaclustered index, it is used to find the location for the row.
The clustered index is updated, if necessary, and each nonclustered index
is updated to include the new row.

Figure 7-9 showsan insert into aheap table with anonclustered index. The
row is placed at the end of the table. A row containing the new key value
andtherow ID isasoinsertedinto theleaf level of the nonclustered index.

Performance and Tuning: Locking 135

Nonclustered indexes

Figure 7-9: An insert into a heap table with a nonclustered index

insert employees

(empid, Iname) _ P 1717
values(24, "Greco") Key Pointer Ray gO’Leary
Page 1132 Ron | Ringer
. Bennet 1421,1 Lisa | White
Key RowlD Pointer | cpap 11293 Bob | Jenkins
il O e e
Key RowID POinter Bennet 1421,1 1132 waras ' Tim Hunter
Page T00T Greane (13074 [1133 Liv Smith
Bennet 14211 1007 Hunter |1307,1 [1127 Page 1133 Ann | Ringer
Karsen [1411,3 {009 Greane 13074 Jo Greane
Smith 13072 062 Cleco e
' Page 1009 Green 14212 Page 1421
Karsen [14113 [1315 Greene [1409,2 lan | Bennet
Andy| Green
Page 1127 Les Yokomoto
Hunter 1307,1
Jenkins 12424 Page 1409
Chad| Dull
Edi Greene
Gabe| White
Kip Greco
Root page Intermediate Leaf pages Data pages

Nonclustered indexes and delete operations

When you delete arow from atable, the query can use a nonclustered
index on the columnsin the where clause to locate the data row to delete,
as shown in Figure 7-10.

Therow in the leaf level of the nonclustered index that points to the data
row is also removed. If there are other nonclustered indexes on the table,
the rows on the leaf level of those indexes are also del eted.

136 Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

Figure 7-10: Deleting a row from a table with a nonclustered index

delete employees Page’ 1242
where Iname = "Green" . Ray | O'Leary
Key Pointer Ron | Ringer
Lisa | White
Page 1132 Bob | Jenkins
Key RowlID Pointer Bennet | 14211
Chan 1129,3
Page 1007 Dull 1409,1 _ Page 1307
Bennet |[1421,1 [1132 Edwards | 10185 Tim -~ Hunter
Key RowlD Pointer Greane |1307,4 (1133 Liv Smlth
Hunter [1307,1 |1127 \ Ann | Ringer
Page 1001 Page 1133 Jo Greane
Bennet |1421,1 |1007 Greane 1307,4
Karsen |1411,3 |1009 Greco 1409,4
Smith |1307,2 | 1062 Page 1009 Green | 14212 Page 1421
Karsen 14113 (1315 Greene | 14092 [\]/ | Bennet
' Mndy | Green
Les Yokomoto
Page 1127
Hunter 1307,1
Jenkins 12424
Page 1409
Chad | Dull
Eddy | Greene
Gabe | White
%\g} Kip Greco

Root page Intermediate Leaf pages |"| Data pages

If the delete operation removes the last row on the data page, the pageis
deallocated and the adjacent page pointers are adjusted in allpages-locked
tables. Any references to the page are also deleted in higher levels of the
index.

If the delete operation leaves only a single row on an index intermediate
page, index pages may be merged, as with clustered indexes.

See “Index page merges’ on page 131.

Thereis no automatic page merging on data pages, so if your applications
make many random deletes, you may end up with data pages that have
only asingle row, or afew rows, on a page.

Performance and Tuning: Locking 137

Index covering

Clustered indexes on data-only-locked tables

Index covering

138

Clustered indexes on data-only-locked tables are structured like
nonclustered indexes. They havealeaf |evel abovethe datapages. Theleaf
level contains the key values and row ID for each row in the table.

Unlike clustered indexes on allpages-locked tables, the datarowsin adata-
only-locked table are not necessarily maintained in exact order by the key.
Instead, the index directs the placement of rows to pages that have
adjacent or nearby keys.

When arow needsto be inserted in a data-only-locked table with a
clustered index, the insert uses the clustered index key just before the
valueto beinserted. Theindex pointers are used to find that page, and the
row isinserted on the pageif thereisroom. If thereis not room, therow is
inserted on a pagein the same allocation unit, or on another allocation unit
already used by the table.

To provide nearby space for maintaining data clustering during inserts and
updates to data-only-locked tables, you can set space management
properties to provide space on pages (using fillfactor and exp_row_size) or
on alocation units (using reservepagegap).

See Chapter 9, “ Setting Space Management Properties.”

Index covering can produce dramatic performance improvements when
all columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite
indexes. Composite indexes can have up to 31 columns adding up to a
maximum 600 bytes.

If you create a composite nonclustered index on each column referenced
in the query’s select list and in any where, having, group by, and order by
clauses, the query can be satisfied by accessing only the index.

Since the leaf level of anonclustered index or a clustered index on a data-
only-locked table contains the key values for each row in atable, queries
that access only the key values can retrieve the information by using the
leaf level of the nonclustered index asif it were the actual table data. This
is called index covering.

Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

There are two types of index scans that can use an index that coversthe
query:

e The matching index scan

e The nonmatching index scan

For both types of covered queries, the index keys must contain all the
columns named in the query. Matching scans have additional
requirements.

“Choosing composite indexes’ on page 314 describes query types that
make good use of covering indexes.

Covering matching index scans

Letsyou skip the last read for each row returned by the query, the read that
fetches the data page.

For point queries that return only asingle row, the performance gain is
slight — just one page.

For range queries, the performance gain islarger, since the covering index
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all
columns named in the query. In addition, the columnsin thewhere clauses
of the query must include the leading column of the columnsin the index.

For example, for an index on columns A, B, C, and D, the following sets
can perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and
ABCD. The columns B, BC, BCD, BD, C, CD, or D do not include the
leading column and can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index
access methods to move from the root of the index to the nonclustered | eaf
page that contains the first row.

In Figure 7-11, the nonclustered index on Iname, fname covers the query.
The where clause includes the leading column, and all columnsin the
select list areincluded in the index, so the data page need not be accessed.

Performance and Tuning: Locking 139

Index covering

Figure 7-11: Matching index access does not have to read the data

row
select fname, Iname —
from employees . age,
where Iname = "Greene" Key Pointer 10 o_Leary
Page T560 11| Ringer
Bennet,Sam 1580,1 12 Wh't'?
Chan,Sandra 1129,3 13 Jenkins
Dull,Normal 1409,1
EdwardsLinda | 10185 Page 1649
. 14 Hunter
Key RowlID Pointer 15 Smith
Page 1544 Page 1561 16 Ringer
BennetSam | 1580,1 1560 Greane,Grey 13074 17 | Greane
Greane,Grey | 1649,4 1561 Greco,Del 14094
Hunter,Hugh | 1649,1 1843 \ Green,Rita 14212 Page 1580
Greene,Cindy 1703,2 18 Bennet
20 Yokomoto
Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 12424
Page 1703
21 Dull
22 Greene
23 White
24 Greco
Root page Intermediate Leaf pages Data pages

Covering nonmatching index scans

When the columns specified in the where clause do not include theleading
column in the index, but al columns named in the select list and other
query clauses (such as group by or having) are included in the index,
Adaptive Server saves I/O by scanning the entire leaf level of the index,
rather than scanning the table.

It cannot perform amatching scan because the first column of theindex is
not specified.

The query in Figure 7-12 shows a nonmatching index scan. This query
does not use the leading columns on the index, but all columnsrequiredin
the query are in the nonclustered index on Iname, fname, emp_id.

140 Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

The nonmatching scan must examine all rowsontheleaf level. It scansall
leaf level index pages, starting from the first page. It has no way of
knowing how many rows might match the query conditions, so it must
examine every row intheindex. Sinceit must begin at the first page of the
leaf level, it can use the pointer in sysindexes.first rather than descending
the index.

Figure 7-12: A nonmatching index scan

select Iname, emp_id

from employees . Page 1647
where fname = "Rita" Key Pointer 10 OjLeary
Page I560 111 Ringer
sysindexes.first _— | |Bennet,sam09.. 1580,1 12 White
ChanSandra,817.. | 11293 13 | Jenkins
Dull,Normal,415... 1409,1
; i~ : Page 1649
' Edwards,Linda,238... | 1018,5 14 Hunter
Key Row! Pointer 15 Smith
Page 1544 16 Ringer
Page 1561
Bennet,Sam,409... [1580,1 |1560 Greane,Grey,486.. 13074 17 Greane
Greane,Grey,486... |1649,4 |1561
H Huah 457 1649 1 1843 GreCO,Del,G?Z... 1409,4 Page 1580
unter,Hugh,457... | 1649, Green,Rita,398... 1421,2 18 | Bennet
Greene,Cindy,127... | 1703,2 20 Yokomoto
Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 12424 Page 1703
21 Dull
v 22 Greene
23 White
24 Greco
Root page Intermediate Leaf pages Data pages

Indexes and caching

“How Adaptive Server performs 1/O for heap operations’ on page 172
introduces the basic concepts of the Adaptive Server data cache, and
shows how caches are used when reading heap tables.

Performance and Tuning: Locking 141

Indexes and caching

Index pages get special handling in the data cache, asfollows:
e Root and intermediate index pages always use LRU strategy.

» Index pages can use one cache while the data pages use a different
cache, if theindex is bound to a different cache.

e Covering index scans can use fetch-and-discard strategy.

» Index pages can cycle through the cache many times, if number of
index trips is configured.

When a query that uses an index is executed, the root, intermediate, |eaf,
and data pages are read in that order. If these pages are not in cache, they
areread into the MRU end of the cache and are moved toward the LRU
end as additional pages areread in.

Eachtimeapageisfoundin cache, itismoved to the M RU end of the page
chain, so the root page and higher levels of the index tend to stay in the
cache.

Using separate caches for data and index pages

Indexes and the tables they index can use different caches. A System
Administrator or table owner can bind aclustered or nonclustered index to
one cache and its table to another.

Index trips through the cache

142

A specia strategy keeps index pages in cache. Data pages make only a
singletrip through the cache: they areread in at the MRU end of the cache
or placed just before the wash marker, depending on the cache strategy
chosen for the query.

Once the pages reach the LRU end of the cache, the buffer for that pageis
reused when another page needs to be read into cache.

For index pages, a counter controls the number of tripsthat an index page
can make through the cache.

When the counter is greater than O for an index page, and it reaches the
LRU end of the page chain, the counter is decremented by 1, and the page
isplaced at the MRU end again.

Adaptive Server Enterprise

CHAPTER 7 How Indexes Work

By default, the number of tripsthat anindex page makesthrough the cache
is set to 0. To change the default, a System Administrator can set the
number of index trips configuration parameter

For more information, see the System Administration Guide.

Performance and Tuning: Locking 143

Indexes and caching

144 Adaptive Server Enterprise

Index

A

allpageslocking 6
changing to with alter table 63
OR strategy 31
specifying with create table 62
specifying with select into 66
specifying with sp_configure 61
ALS
log writer 118
user log cache 116
whentouse 116
ALS, see Asynchronous Log Service 115
alter table command
changing table locking scheme with 63-66
sp_dboption and changing lock scheme 64
aternative predicates
nonqualifying rows 33
application design
deadlock avoidance 87
deadlock detectionin 83
delaying deadlock checking 87
isolation level O considerations 21
levelsof locking 43
primary keysand 104
user interaction in transactions 41
artificial columns 113

B

batch processing
transactions and lock contention 42
binary expressions Xiii
blocking 54
blocking process
avoiding during mass operations 44
sp_lock reporton 79
sp_who reporton 77
B-trees, index

Performance & Tuning:Locking

C

nonclustered indexes 131

chains of pages

overflow pagesand 128

character expressions xiii
clustered indexes 120

changing locking modesand 65
delete operations 129
guidelinesfor choosing 100
insert operationsand 124

order of key values 123
overflow pagesand 128
pagereads 124

select operationsand 123
structureof 122

column level locking

pseudo 34
columns
artificial 113

compositeindexes 106

advantagesof 108

concurrency

deadlocksand 81
lockingand 6, 81

configuration (Server)

lock limit 45

consistency

transactionsand 4

constants Xiii
constraints

primary key 98
uniqgue 98

contention

avoiding with clustered indexes
reducing 40

contention, lock

locking schemeand 55

119

145

Index

sp_object_stats reporton 89
context column of sp_lock output 79
conventions

used in manuals xi
CPU usage

deadlocksand 83
create index command

locksacquiredby 29
create table command

locking scheme specification 62
Ccursors

close on endtran option 73

isolation levelsand 72

lock duration 28

lock type 28,30

lockingand 71-74

shared keywordin 73

D

data

consistency 4

uniqueness 119
data modification

nonclustered indexesand 105

number of indexesand 93
data pages

clustered indexesand 122

full, and insert operations 125
database design

indexing based on 112

logical keysand index keys 99
databases

lock promotion thresholdsfor 44
data-only locking

OR strategy and locking 31
data-only locking (DOL) tables

maximum row size 63
datapages locking

changing to with alter table 63

described 8

specifying with create table 62

specifying with select into 66

specifying with sp_configure 61
datarows locking

146

changing to with alter table 63

described 9

specifying with create table 62

specifying with select into 66

specifying with sp_configure 61
datatypes

choosing 104, 113

numeric compared to character 113

deadlock checking period configuration parameter

87
deadlocks 81-88, 89
application-generated 82
avoiding 86
defined 81
delaying checking 87
detection 83, 89
diagnosing 54
error messages 83
performanceand 39
read committed with lock effectson
sp_object_stats reporton 89
worker processexample 84
delete
uncommitted 32
delete command
transaction isolation levelsand 23
delete operations
clustered indexes 129
nonclustered indexes 136
demandlocks 13
sp_lock reporton 79
detecting deadlocks 89
dirtyreads 5
preventing 22
transaction isolation levelsand 20
duration of laiches 18
duration of locks
read committed with lock and 29
read-only cursors 30
transaction isolation level and 26

E

€rror messages
deadlocks 83

Adaptive Server Enterprise

29

escalation, lock 48
exclusive locks
page 11
sp_lock reporton 79
table 12

F

fam dur locks 79
fetching cursors
lockingand 73
fillfactor
index creationand 104
fixed-length columns
for index keys 105
overhead 105
floating-point data ~ Xiii

H

holdlock keyword

locking 69

shared keyword and 73
hot spots

avoiding 42

IDENTITY columns
indexing and performance 100
index keys, logical keysand 99
index pages
lockson 7
page splitsfor 127
storageon 120
index selection 102
indexes 119-143
accessthrough 119
design considerations 91
dropping infrequently used 112
guidelinesfor 104
intermediate level 122
leaf level 121

Performance & Tuning:Locking

Index

leaf pages 132

locking with 11

number allowed 98

performanceand 119-143

root level 121

selectivity 93

size of entriesand performance 94

typesof 120
indexing

configure large buffer pools 114

create aclaustered index first 114
infinity key locks 17
insert command

contentionand 43

transaction isolation levelsand 23
insert operations

clustered indexes 124

nonclustered indexes 135

page split exceptionsand 126
integer data

inSQL xiii
intent tablelocks 12

sp_lock reporton 79
intermediate levels of indexes 122
isolation levels 19-26, 66-71

cursors 72

default 67

dirty reads 22

lock durationand 26, 27, 28

nonrepeatablereads 23

phantoms 23

seridizablereads and locks 17

transactions 19

J

joins
choosingindexesfor 101
datatype compatibility in 105

K

key values
index storage 119

147

Index

order for clustered indexes 123
overflow pagesand 128
keys, index
choosing columnsfor 100
clustered and nonclustered indexesand 120
composite 106
logical keysand 99
monotonically increasing 127
size and performance 104

sizeof 98
unique 104
L
latches 17
leaf levelsof indexes 121
leaf pages 132
levels
indexes 121
locking 43

lock allpages option
alter table command 63
create table command 62
select into command 66
lock datapages option
alter table command 63

contention, reducing 4044
control over 5,10

cursorsand 71

datapages locking scheme 8
datarowslocking scheme 9
deadlocks 81-88

entiretable 10

for update clause 71

forcing awrite 13

holdlock keyword 68

index pages 7

indexesused 11

isolation levelsand 19-26, 6671
last pageinsertsand 100
monitoring contention 56
noholdlock keyword 68
noholdlock keyword 70
overhead 6

page and table, controlling 19, 48
performance 39

read committed clause 69

read uncommitted clause 69, 71
reducing contention 40
serializable clause 69

shared keyword 68, 71

sp_lock reporton 78
transactionsand 5

create table command 62 locking commands 61-75
select into command 66 locking configuration 39
lock datarows option locking scheme 53-57
alter table command 63 alpages 6
create table command 62 changing with alter table 63-66
select into command 66 clustered indexes and changing 65

lock duration. See Duration of locks create table and 62

lock promotion thresholds ~ 44-53 datapages 8
database 52 datarows 9
default 52 lock typesand 9
dropping 52 server-wide default 61
precedence 52 specifying with create table 62
promation logic 51 specifying with select into 66
server-wide 51 locks
table 52 blocking 77
lock scheme configuration parameter 61 command typeand 27, 28
locking 4-45 demand 13
allpageslocking scheme 6 escaation 48
concurrency 6 exclusivepage 11

148 Adaptive Server Enterprise

exclusivetable 12

famdur 79

granularity 6

infinity key 17

intent table 12

isolation levelsand 27, 28
latchesand 17

limits 29

“lock deep” status 77
or queriesand 31

page 10
reportingon 77
shared page 10
shared table 12
sizeof 6
table 12

tableversuspage 48
tableversusrow 48
table, tablescansand 30

typesof 9,79
update page 11
viewing 78

worker processesand 15
locks, number of
data-only-lockingand 45
locktype column of sp_lock output 79
logical expressions Xiii
logical keys, index keysand 99

M
matching index scans 139
messages

deadlock victim 83
monitoring

index usage 112

lock contention 56
Monitoring indexes

examplesof 103

using sp_monitorconfig 102
monitoring indexes ?2-104
multicolumn index. See composite indexes

Performance & Tuning:Locking

Index

N

noholdlock keyword, select 70
nonclustered indexes 120
definitionof 131
delete operations 136
guidelinesfor 101
insert operations 135
number allowed 98
select operations 134
sizeof 132
structure 132
nonmatching index scans 140-141
nonrepeatable reads 23
null columns
variable-length 104
null values
datatypesallowing 104
number (quantity of)
bytesper index key 98
clusteredindexes 120
indexes per table 98
locksinthesystem 45
locksonatable 49
nonclustered indexes 120
number of locks configuration parameter
data-only-locked tablesand 45
number of sort buffers 114
numbers
row offset 132
numeric expressions Xxiii

O

observing deadlocks 89

offset table
nonclustered index selectsand 134
row IDsand 132

optimisticindex locking 58
added column by sp_help 59
added option in sp_chgattribute 59
cautionsand issues 59
using 58

optimizer
dropping indexesnot used by 112
indexesand 91

149

Index

nonunique entriesand 93

or queries
allpages-locked tablesand 31
data-only-locked tablesand 31
isolation levelsand 32

lockingand 31
row requdificationand 32
order

compositeindexesand 106
dataand index storage 120
index key values 123
order by clause
indexesand 119
output
sp_estspace 94
overflow pages 128
key valuesand 128
overhead
datatypesand 104, 114
nonclustered indexes 105
variable-length columns 105

P

page chains

overflow pagesand 128
page lock promotion HWM configuration parameter 49
page lock promotion LWM configuration parameter 50
page lock promotion PCT configuration parameter 50
pagelocks 9

sp_lock reporton 79

table locksversus. 48

typesof 10
page splits

datapages 125

index pagesand 127

nonclustered indexes, effecton 125

performance impact of 127

pages

overflow 128
pages, data
splitting 125
pages, index

leaf level 132

storageon 120

150

parallel query processing

demand locksand 15
parrellel sort

configure enough sort buffers 114
performance

clusteredindexesand 56

data-only-locked tablesand 56

indexesand 91

lockingand 39

number of indexesand 93
phantoms 17

seridlizablereadsand 17
phantomsin transactions 23
pointers

index 120
precedence

lock promotion thresholds 52
primary key constraint

index created by 98
promotion, lock 48

Q

qualifying old and new values
uncommitted updates 35
queries
range 93

R

range queries 93
read committed with lock configuration parameter
deadlocksand 29
lock duration 29
reads
clusteredindexesand 124
reduce contention
suggestions 36
referential integrity
references and unique index requirements 104
root level of indexes 121
row ID (RID) 132
row lock promotion HWM configuration parameter 49
row lock promotion LWM configuration parameter 50

Adaptive Server Enterprise

row lock promotion PCT configuration parameter
50
row locks
sp_lock reporton 79
tablelocksversus 48
row offset number 132
row-level locking. See Data-only locking

S

scan session 48
scanning
skipping uncommitted transactions 32
scans, table
avoiding 119
search conditions
clustered indexesand 100
locking 11
select
skipping uncommitted transactions 32
select command
optimizing 93
select operations
clustered indexesand 123
nonclustered indexes 134
selectqueries 34
seria query processing
demandlocksand 14
serializable reads
phantomsand 17
set command
transaction isolation level 67
shared keyword
cursorsand 73
lockingand 73
shared locks
cursorsand 73
holdlock keyword 70

page 10

sp_lock reporton 79

table 12
size

nonclustered and clustered indexes 132
skip

nonqualifying rows 33

Performance & Tuning:Locking

Index

deeping locks 77
sort operations (order by)
indexing to avoid 119
sp_chgattribute, added option for optimistic index
locking 59
sp_dropglockpromote system procedure 52
sp_droprowlockpromote system procedure 52
sp_help, adds column displaying optimistic index
locking 59
sp_lock system procedure 78
sp_object_stats system procedure 88-89
sp_setpglockpromote system procedure 51
sp_setrowlockpromote system procedure 51
sp_who system procedure
blocking process 77
space
clustered compared to nonclustered indexes 132
space allocation
clustered index creation 98
deallocation of index pages 131
index page splits 127
monotonically increasing key valuesand 127
page splitsand 125
splitting
datapagesoninserts 125
SQL standards
concurrency problems 44
storage management
space dedllocationand 130
symbols
in SQL statements xii

T

tablelocks 9
controlling 19
page locksversus 48
row locksversus 48
sp_lock reporton 79
typesof 12

table scans
avoiding 119
locksand 30

tables
locksheldon 19, 79

151

Index

secondary 113 index overhead and 114
tasks
demand locksand 13
testing
“hot spots” 101 W
nonclustered indexes 105 wait-times 89
timeinterval whentouse ALS 116
deadlock checking 87 where clause
transaction isolation level option, set 67 creating indexesfor 101
transaction isolation levels worker processes
lock durationand 26 deadlock detectionand 84
or processingand 32 lockingand 15
transactions

close on endtran option 73
deadlock resolution 83
default isolation level 67
locking 5

tsequal system function
compared to holdlock 44

U

uncommitted
inserts during selects 32
uncommitted updates
qualifyingoldand new 35
unigue constraints
index created by 98
uniqueindexes 119
optimizing 104
update command
transaction isolation levelsand 23
updatelocks 11
sp_lock reporton 79
update operations
hot spots 42
index updatesand 105
user log cache, inALS 116
Using Asynchronous log service 115
Using Asynchronous log service, ALS 115

V

variable-length columns

152 Adaptive Server Enterprise

	Performance and Tuning: Locking
	About This Book
	CHAPTER 1 Introduction to Performance and Tuning
	CHAPTER 2 Locking Overview
	How locking affects performance
	Overview of locking
	Granularity of locks and locking schemes
	Allpages locking
	Datapages locking
	Datarows locking

	Types of locks in Adaptive Server
	Page and row locks
	Table locks
	Demand locks
	Demand locking with serial execution
	Demand locking with parallel execution

	Range locking for serializable reads
	Latches

	Lock compatibility and lock sufficiency
	How isolation levels affect locking
	Isolation Level 0, read uncommitted
	Isolation Level 1, read committed
	Isolation Level 2, repeatable read
	Isolation Level 3, serializable reads
	Adaptive Server default isolation level

	Lock types and duration during query processing
	Lock types during create index commands
	Locking for select queries at isolation Level 1
	Table scans and isolation Levels 2 and 3
	Table scans and table locks at isolation Level 3
	Isolation Level 2 and Allpages-Locked tables

	When update locks are not required
	Locking during or processing
	Processing or queries for Allpages-Locked tables
	Processing or queries for Data-Only-Locked tables

	Skipping uncommitted inserts during selects
	Skipping uncommitted inserts during deletes, updates and inserts

	Using alternative predicates to skip nonqualifying rows

	Pseudo column-level locking
	Select queries that do not reference the updated column
	Qualifying old and new values for uncommitted updates

	Suggestions to reduce contention

	CHAPTER 3 Locking Configuration and Tuning
	Locking and performance
	Using sp_sysmon and sp_object_stats
	Reducing lock contention
	Adding indexes to reduce contention
	Keeping transactions short
	Avoiding hot spots

	Additional locking guidelines

	Configuring locks and lock promotion thresholds
	Configuring Adaptive Server’s lock limit
	Estimating number of locks for data-only-locked tables

	Configuring the lock hashtable (Lock Manager)
	Setting lock promotion thresholds
	Lock promotion and scan sessions
	Lock promotion high water mark
	Lock promotion low water mark
	Lock promotion percent
	Setting server-wide lock promotion thresholds
	Setting the lock promotion threshold for a table or database
	Precedence of settings
	Dropping database and table settings
	Using sp_sysmon while tuning lock promotion thresholds

	Choosing the locking scheme for a table
	Analyzing existing applications
	Choosing a locking scheme based on contention statistics
	Monitoring and managing tables after conversion
	Applications not likely to benefit from data-only locking
	Tables where clustered index performance must remain high
	Tables with maximum-length rows

	Optimistic index locking
	Understanding optimistic index locking
	Using optimistic index locking
	Cautions and issues

	CHAPTER 4 Using Locking Commands
	Specifying the locking scheme for a table
	Specifying a server-wide locking scheme
	Specifying a locking scheme with create table
	Changing a locking scheme with alter table
	Before and after changing locking schemes
	After alter table completes

	Expense of switching to or from allpages locking
	Sort performance during alter table
	Specifying a locking scheme with select into

	Controlling isolation levels
	Setting isolation levels for a session
	Syntax for query-level and table-level locking options
	Using holdlock, noholdlock, or shared
	Using the at isolation clause
	Making locks more restrictive
	Using read committed

	Making locks less restrictive
	Using read uncommitted
	Using shared

	Readpast locking
	Cursors and locking
	Using the shared keyword

	Additional locking commands
	lock table Command
	Lock timeouts

	CHAPTER 5 Locking Reports
	Locking tools
	Getting information about blocked processes
	Viewing locks
	Viewing locks
	Intrafamily blocking during network buffer merges

	Deadlocks and concurrency
	Server-side versus application-side deadlocks
	Application deadlock example

	Server task deadlocks
	Deadlocks and parallel queries
	Printing deadlock information to the error log
	Avoiding deadlocks
	Acquire locks on objects in the same order
	Delaying deadlock checking

	Identifying tables where concurrency is a problem
	Lock management reporting

	CHAPTER 6 Indexing for Performance
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Exception for wide data rows and wide index rows

	Fixing corrupted indexes
	Repairing the system table index
	Repairing a nonclustered index

	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Index Selection
	Examples of using the index selection

	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Advantages and disadvantages of composite indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes
	Configure enough sort buffers
	Create the clustered index first
	Configure large buffer pools

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using the ALS
	ULC flusher
	Log writer
	Changes in stored procedures

	CHAPTER 7 How Indexes Work
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index Size

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Clustered indexes and insert operations
	Page splitting on full data pages
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Clustered indexes and delete operations
	Deleting the last row on a page
	Index page merges

	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Nonclustered indexes and select operations
	Nonclustered index performance
	Nonclustered indexes and insert operations
	Nonclustered indexes and delete operations
	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Covering nonmatching index scans

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache

	Index

